Your browser doesn't support javascript.
loading
Mooney-Rivlin Parameter Determination Model as a Function of Temperature in Vulcanized Rubber Based on Molecular Dynamics Simulations.
Gomez-Jimenez, Salvador; Saucedo-Anaya, Tonatiuh; Guerrero-Mendez, Carlos; Robles-Guerrero, Antonio; Silva-Acosta, Luis; Navarro-Solis, David; Lopez-Betancur, Daniela; Contreras Rodríguez, Ada Rebeca.
Afiliação
  • Gomez-Jimenez S; Engineering Academic Unit, Autonomous University of Zacatecas, Avenue López Velarde 801, Zacatecas 98000, Mexico.
  • Saucedo-Anaya T; Academic Unit of Science and Technology of Light and Matter, Autonomous University of Zacatecas, Campus Siglo XXI, Zacatecas 98160, Mexico.
  • Guerrero-Mendez C; Academic Unit of Science and Technology of Light and Matter, Autonomous University of Zacatecas, Campus Siglo XXI, Zacatecas 98160, Mexico.
  • Robles-Guerrero A; Engineering Academic Unit, Autonomous University of Zacatecas, Avenue López Velarde 801, Zacatecas 98000, Mexico.
  • Silva-Acosta L; Academic Unit of Science and Technology of Light and Matter, Autonomous University of Zacatecas, Campus Siglo XXI, Zacatecas 98160, Mexico.
  • Navarro-Solis D; Engineering Academic Unit, Autonomous University of Zacatecas, Avenue López Velarde 801, Zacatecas 98000, Mexico.
  • Lopez-Betancur D; Academic Unit of Science and Technology of Light and Matter, Autonomous University of Zacatecas, Campus Siglo XXI, Zacatecas 98160, Mexico.
  • Contreras Rodríguez AR; Engineering Academic Unit, Autonomous University of Zacatecas, Avenue López Velarde 801, Zacatecas 98000, Mexico.
Materials (Basel) ; 17(13)2024 Jul 02.
Article em En | MEDLINE | ID: mdl-38998334
ABSTRACT
The automotive industry is entering a digital revolution, driven by the need to develop new products in less time that are high-quality and environmentally friendly. A proper manufacturing process influences the performance of the door grommet during its lifetime. In this work, uniaxial tensile tests based on molecular dynamics simulations have been performed on an ethylene-propylene-diene monomer (EPDM) material to investigate the effect of the crosslink density and its variation with temperature. The Mooney-Rivlin (MR) model is used to fit the results of molecular dynamics (MD) simulations in this paper and an exponential-type model is proposed to calculate the parameters C1(T) and C2T. The experimental results, confirmed by hardness tests of the cured part according to ASTM 1415-88, show that the free volume fraction and the crosslink density have a significant effect on the stiffness of the EPDM material in a deformed state. The results of molecular dynamics superposition on the MR model agree reasonably well with the macroscopically observed mechanical behavior and tensile stress of the EPDM at the molecular level. This work allows the accurate characterization of the stress-strain behavior of rubber-like materials subjected to deformation and can provide valuable information for their widespread application in the injection molding industry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça