Your browser doesn't support javascript.
loading
Impact of nanosilver surface electronic distributions on serum protein interactions and hemocompatibility.
Rivero, Paula S; Pistonesi, Denise B; Belén, Federico; Centurión, M Eugenia; Benedini, Luciano A; Rauschemberger, M Belén; Messina, Paula V.
Afiliação
  • Rivero PS; Department of Chemistry, Universidad Nacional del Sur. INQUISUR-CONICET, B8000CPB, Bahía Blanca, Argentina.
  • Pistonesi DB; Department of Chemistry, Universidad Nacional del Sur. INQUISUR-CONICET, B8000CPB, Bahía Blanca, Argentina.
  • Belén F; Department of Chemistry, Universidad Nacional del Sur. INQUISUR-CONICET, B8000CPB, Bahía Blanca, Argentina.
  • Centurión ME; Department of Chemistry, Universidad Nacional del Sur. INQUISUR-CONICET, B8000CPB, Bahía Blanca, Argentina.
  • Benedini LA; Department of Chemistry, Universidad Nacional del Sur. INQUISUR-CONICET, B8000CPB, Bahía Blanca, Argentina.
  • Rauschemberger MB; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina.
  • Messina PV; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina.
Nanotechnology ; 35(46)2024 Aug 29.
Article em En | MEDLINE | ID: mdl-39116890
ABSTRACT
The translation of silver-based nanotechnology 'from bench to bedside' requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. According to spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests, and cellular inspection, we determine that at extremely low nanosilver concentrations (0.125-2.5µg ml-1), there is a relevant interaction effect on the serum albumin and red blood cells (RBCs). This explanation has its origin in the surface charge distribution of nanosilver particles and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level, generating a compaction of the native protein molecule. In contrast, the spherical nanosilver particle, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs/bovine serum albumin ≈ 0.044 molar ratio values without altering the coagulation cascade tests; however, the spherical-shaped nanosilver exerts a negative impact on RBCs. Overall, our results suggest that the electron distributions of nanosilver particles, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins' and RBCs' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prata / Soroalbumina Bovina / Eritrócitos / Nanopartículas Metálicas Limite: Animals / Humans Idioma: En Revista: Nanotechnology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prata / Soroalbumina Bovina / Eritrócitos / Nanopartículas Metálicas Limite: Animals / Humans Idioma: En Revista: Nanotechnology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Reino Unido