Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 430, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517597

RESUMO

BACKGROUND: Short tandem repeats (STRs) are the most widely used genetic markers in forensic genetics. Therefore, it is essential to document genetic population data of new kits designed for human identification purposes to enable laboratories to use these genetic systems to interpret and solve forensic casework. However, in Mexico, there are no studies with the PowerPlex Fusion 6C System, which includes 26 STRs (23 autosomal STRs and 3 Y-STRs). METHODS AND RESULTS: 600 DNA samples from Mexico City were subjected to genotyping using the PowerPlex Fusion 6C System. For autosomal STRs, 312 different alleles were observed. Combined PE and PD were 99.999999809866% and 99.99999999999999999999999818795%, respectively. Genetic distances and AMOVA test showed low but significant differentiation between Mexican populations. CONCLUSIONS: The results reported in this work demonstrate the efficacy of this system for human identification purposes in the population studied and justify its possible application in other Mexican Mestizo populations.


Assuntos
Impressões Digitais de DNA , Genética Populacional , Humanos , Frequência do Gene/genética , México , Impressões Digitais de DNA/métodos , Repetições de Microssatélites/genética
2.
Parasite Immunol ; 46(1): e13020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38275198

RESUMO

Tritrichomonas foetus is a protozoan parasite that causes a venereal disease in cattle limiting reproduction by abortions and sterility. The immune response against this parasite is poorly understood. Since the iron and calcium ions are important regulators of the microenvironment of the urogenital tract in cattle, we decided to evaluate the role of these divalent cations on the antigenicity of membrane proteins of T. foetus on macrophage activation as one of the first inflammatory responses towards this pathogen. Colorimetric methods and ELISA were used to detect the nitric oxide and oxygen peroxide production and expression of cytokines in culture supernatant from macrophage incubated with membrane proteins from T. foetus cultured in iron- and calcium-rich conditions. qRT-PCR assays were used to evaluate the transcript expression of genes involved in the inflammatory response on the macrophages. The membrane proteins used for in vitro stimulation caused the up-regulation of the iNOS and NOX-2 genes as well as the generation of NO and H2 O2 in murine macrophages on a dependent way of the metal concentrations. Additionally, after stimulation, macrophages showed a considerable rise in pro-inflammatory cytokines and a downregulation of anti-inflammatory cytokines, as well as up-regulation in the transcription of the TLR4 and MyD88 genes. These data suggest that membrane proteins of T. foetus induced by iron and calcium can activate an inflammatory specific macrophage response via TLR4/MyD88 signalling pathway.


Assuntos
Doenças dos Bovinos , Tritrichomonas foetus , Animais , Bovinos , Feminino , Camundongos , Gravidez , Cálcio/metabolismo , Doenças dos Bovinos/parasitologia , Citocinas/metabolismo , Ferro/metabolismo , Macrófagos , Proteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Tritrichomonas foetus/genética , Tritrichomonas foetus/metabolismo
3.
J Eukaryot Microbiol ; 71(1): e13000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37667470

RESUMO

Tritrichomonas foetus is a flagellated parasite that primarily infects the reproductive tissues of livestock, causing bovine trichomoniasis. The cytoplasmic membrane of T. foetus contains various compounds that contribute to adherence, colonization, and pathogenicity. Metronidazole (MTZ) is the main treatment for trichomoniasis, but the emergence of drug-resistant strains is a concern due to improper use and dosing. T. foetus infection induces inflammation, and macrophages are key players in the immune response. However, our understanding of the host's immune response to T. foetus is limited, and the specific mechanisms underlying these responses are not well understood. This study aimed to investigate the impact of T. foetus surface proteins from trophozoites cultured under different sublethal MTZ conditions (MTZ-treated T. foetus MPs) on macrophage activation. By analyzing cytokine levels and gene expression in murine macrophages, we demonstrated that MTZ-treated T. foetus MPs induce a specific proinflammatory response. MTZ-treated T. foetus MPs-exposed macrophages exhibited a higher NO and H2 O2 production and overexpression of iNOS and NOX-2 genes in comparison to untreated T. foetus. Additionally, MTZ-treated T. foetus MPs triggered a significant induction of the proinflammatory cytokines IL-1ß, IL-6, TNF-α, and IFN-γ, as well as the overexpression of the TLR4, MyD88, and NF-κB genes on murine macrophages. The study aimed to unravel the immunological response and potential proinflammatory pathways involved in T. foetus infection and MTZ stress. Understanding the immune responses and mechanisms through which T. foetus surface proteins activate macrophages can contribute to the development of new therapeutic strategies for controlling bovine trichomoniasis.


Assuntos
Tricomoníase , Tritrichomonas foetus , Animais , Bovinos , Camundongos , Metronidazol/farmacologia , Citocinas , Macrófagos , Proteínas de Membrana
4.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569569

RESUMO

Testicular cancer is the most prevalent tumor among males aged 15 to 35, resulting in a significant number of newly diagnosed cases and fatalities annually. Non-coding RNAs (ncRNAs) have emerged as key regulators in various cellular processes and pathologies, including testicular cancer. Their involvement in gene regulation, coding, decoding, and overall gene expression control suggests their potential as targets for alternative treatment approaches for this type of cancer. Furthermore, epigenetic modifications, such as histone modifications, DNA methylation, and the regulation by microRNA (miRNA), have been implicated in testicular tumor progression and treatment response. Epigenetics may also offer critical insights for prognostic evaluation and targeted therapies in patients with testicular germ cell tumors (TGCT). This comprehensive review aims to present the latest discoveries regarding the involvement of some proteins and ncRNAs, mainly miRNAs and lncRNA, in the epigenetic aspect of testicular cancer, emphasizing their relevance in pathogenesis and their potential, given the fact that their specific expression holds promise for prognostic evaluation and targeted therapies.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Humanos , Neoplasias Testiculares/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética , Neoplasias Embrionárias de Células Germinativas/genética
5.
Pathogens ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678426

RESUMO

To understand whether protein Tv-PSP1 from Trichomonas vaginalis recognizes mRNA parasite stem-loop structures, we conducted REMSA and intrinsic fluorescence assays. We found the recombinant Tv-PSP1 structure, determined with X-ray crystallography, showed unusual thermal stability of the quaternary structure, associated with a disulfide bridge CYS76-CYS104. To gain deeper insight into the Tv-PSP1 interaction with mRNA stem-loops (mRNAsl) and its relationship with thermal stability, we also used an integrated computational protocol that combined molecular dynamics simulations, docking assays, and binding energy calculations. Docking models allowed us to determine a putative contact surface interaction region between Tv-PSP1 and mRNAsl. We determined the contributions of these complexes to the binding free energy (ΔGb) in the electrostatic (ΔGelec) and nonelectrostatic (ΔGnon-elec) components using the Adaptive Poisson-Boltzmann Solver (APBS) program. We are the first, to the best of our knowledge, to show the interaction between Tv-PSP1 and the stem-loop structures of mRNA.

6.
J Proteomics ; 263: 104618, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598868

RESUMO

Rhipicephalus microplus is the most serious tick parasite for the livestock industry in tropical and subtropical regions. A cost-effective control method to manage the infestation of this parasite involves the use of chemicals such as ivermectin. However, massive overuse of ivermectin over recent decades has selected for ivermectin-resistant populations of R. microplus. Here, we carried out a comparative proteomic analysis of the midgut of ivermectin-susceptible versus ivermectin-resistant ticks using tandem mass tags coupled to synchronous precursor selection. In susceptible ticks, there was an over-representation of proteins associated with blood digestion and anticoagulation. In contrast, resistant ticks exhibited an over-accumulation of proteins involved in phase I and phase II of the detoxification metabolism, including cytochrome P450, glutathione-S-transferase, and ABC transporters, as well as many ribosomal and other translation-related proteins. This information provides new clues about the mechanisms of ivermectin resistance in R. microplus as well as suggesting potential novel molecular targets to cope with ivermectin-resistant populations of R. microplus. SIGNIFICANCE: Cattle farming is an important primary economic activity for food production all over the globe. However, this activity also has detrimental environmental impacts, including the overuse of ivermectin and other chemicals used to control parasite infestations. The overuse of ivermectin selected for parasites with resistance to this chemical, including tick species like R. microplus. There has been extensive to understand the mechanisms that mediate ivermectin resistance in arthropods, but many gaps remain for the full comprehension of this phenomenon. Understanding the biochemistry behind ivermectin resistance could provide new alternatives to fight these parasites. We therefore consider that determining the metabolic mechanisms involved in ivermectin resistance is of great relevance. The comparative proteomic analysis here reported shows the relevance of the active detoxifying metabolism in the midgut of resistant ticks, which may be key for the development of novel control methods.


Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Glutationa Transferase/metabolismo , Ivermectina/farmacologia , Proteoma/metabolismo , Proteômica , Rhipicephalus/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-35636129

RESUMO

The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.


Assuntos
Antiprotozoários , Produtos Biológicos , Parasitos , Animais , Antiprotozoários/química , Produtos Biológicos/farmacologia , Ecossistema , Giardia , Humanos
8.
J Neurol Sci ; 419: 117175, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068904

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons that results in progressive paralysis and muscular atrophy. There are many molecules and genes involved in neuromuscular degeneration in ALS; among these, matrix metalloproteinases (MMPs). MMPs play an important role in the pathology of ALS, and MMP-1, 2, 3, and 9 might serve as disease progression markers. Tissue inhibitors of metalloproteinases (TIMPS) might also function as progression markers in ALS because they participate in regulating the proteolytic activity of MMPs. Moreover, a diversity of genes also plays a role in the pathogenesis of ALS; most MMPs-coding genes present variants related to the pathological proteolytic activity. This short review, however, will focus on the role of matrix metalloproteinases in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Humanos , Metaloproteinases da Matriz/genética , Neurônios Motores
9.
Biometals ; 33(4-5): 229-240, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32920708

RESUMO

Zinc is an essential micronutrient that plays an important role as a co-factor to several proteins, including zinc-responsive transcription factors. Trichomonas vaginalis is able to survive in the presence of high zinc concentrations in the male urogenital tract. Several genes in T. vaginalis have been shown to respond to changes in zinc concentrations, however, the zinc-dependent mechanism remains undetermined. Recently, we identified in T. vaginalis the zinc finger protein, TvZNF1, which is an ortholog of the mammal metal transcription factor (MTF1). We searched for several of the zinc-responsive genes in T. vaginalis to determine whether if they contain metal response elements (MRE), cis-acting DNA elements that specifically bind MTF1. Six highly conserved over-represented sequence motifs (TvMREs), which share similarity with other eukaryotic MREs, were identified in the zinc-responsive genes in T. vaginalis. We also demonstrated that some of the TvMREs assemble as divalent complexes either as two closely spaced TvMREs or as two overlapping TvMREs forming a palindromic-like sequence: TGCC(N3)GGCA. Electrophoretic mobility shift assays were used to detect the zinc-dependent binding of TvZNF1 and nuclear proteins from T. vaginalis to this specific palindromic motif. Our results support a novel mechanism used by T. vaginalis for the transcriptional regulation of associated zinc-responsive genes through a MTF1/MRE-like system.


Assuntos
Fatores de Transcrição/genética , Trichomonas vaginalis/genética , Zinco/análise , Elementos de Resposta , Zinco/metabolismo
10.
Adv Exp Med Biol ; 1168: 31-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31713163

RESUMO

Epigenomics refers to the study of genome-wide changes in epigenetic mechanisms including DNA methylation, histone modifications and non-coding RNAs expression. The alterations in normal DNA methylation and histone acetylation/deacetylation patterns lead to deregulated transcription and chromatin organization resulting in altered gene expression profiles that facilitates tumor development and progression. In consequence, novel therapeutic strategies aimed at reversing aberrant epigenetic marks in cancer cells have been developed and used in recent molecular studies and clinical trials. Pharmaco-epigenomics is a research area, which refers to the study of epigenome changes in cancer development and how chemotherapeutic agents can reverse these aberrant epigenetic marks by targeting the epigenetic machinery. Besides, the effects of genome-wide polymorphisms in populations leading to variations in drug response are also study subject of pharmaco-epigenomics and are being studied extensively in cancer. Recent findings showed that drug response could be largely influenced by the presence of aberrant epigenetic marks of the whole genome. This implies that biological pathways and cellular processes are under the impact of epigenome status. However, data about the relationship between drug response and the epigenomic variations is still scarce mainly because the epigenome is highly variable between individuals. The present chapter reviewed the advances on the epigenetics changes mainly DNA methylation and histones modifications on cervical and breast human cancers. A special emphasis in how they could be used as targets for the development and use of novel drugs in cancer therapy is delineated.


Assuntos
Epigenômica , Farmacogenética , Pesquisa Translacional Biomédica , Metilação de DNA , Epigenômica/tendências , Humanos , Neoplasias/fisiopatologia , Neoplasias/terapia , Farmacogenética/tendências , Pesquisa Translacional Biomédica/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA