Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Res Int ; 174(Pt 1): 113569, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986521

RESUMO

Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.


Assuntos
Ácido Acético , Chá , Ácido Acético/análise , Fermentação , Bebidas/análise , Etanol/análise , Polifenóis/análise
2.
Foods ; 12(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38002106

RESUMO

The neuroinflammatory process is considered one of the main characteristics of central nervous system diseases, where a pro-inflammatory response results in oxidative stress through the generation of reactive oxygen and nitrogen species (ROS and RNS). Olive (Olea europaea L.) pomace is a by-product of olive oil production that is rich in phenolic compounds (PCs), known for their antioxidant and anti-inflammatory properties. This work looked at the antioxidant and anti-neuroinflammatory effects of the bioavailable PC from olive pomace in cell-free models and microglia cells. The bioavailable PC of olive pomace was obtained through the process of in vitro gastrointestinal digestion of fractionated olive pomace (OPF, particles size < 2 mm) and micronized olive pomace (OPM, particles size < 20 µm). The profile of the PC that is present in the bioavailable fraction as well as its in vitro antioxidant capacity were determined. The anti-neuroinflammatory capacity of the bioavailable PC from olive pomace (0.03-3 mg L-1) was evaluated in BV-2 cells activated by lipopolysaccharide (LPS) for 24 h. The total bioavailable PC concentration and antioxidant activity against peroxyl radical were higher in the OPM than those observed in the OPF sample. The activation of BV-2 cells by LPS resulted in increased levels of ROS and nitric oxide (NO). The bioavailable PCs from both OPF and OPM, at their lowest concentrations, were able to reduce the ROS generation in activated BV-2 cells. In contrast, the highest PC concentration of OPF and OPM was able to reduce the NO levels in activated microglial cells. Our results demonstrate that bioavailable PCs from olive pomace can act as anti-neuroinflammatory agents in vitro, independent of particle size. Moreover, studies approaching ways to increase the bioavailability of PCs from olive pomace, as well as any possible toxic effects, are needed before a final statement on its nutritional use is made.

3.
Braz J Microbiol ; 53(3): 1167-1174, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35482283

RESUMO

Purified endoxylanase from Thermomyces lanuginosus PC7S1T was immobilized in calcium alginate, resulting in a yield of 78.5% and a reusability for 11 cycles. The stability of the immobilized enzyme was given for a pH range of 4 to 9 for 96 h. Endoxylanase immobilized in calcium alginate at 65 °C exhibited thermal stability equal to the soluble enzyme for 5 h, and at high temperatures of 75 °C and 85 °C showed half-lives of 4 and 3 h, respectively. Both soluble endoxylanase and immobilized forms were able to hydrolyze hemicellulose, obtained from low-lignin sorghum biomass pretreated with 5% H2O2 and 2% NaOH, after 1 h of incubation at 65 °C, releasing a mixture of short-chain xylooligosaccharides (X2-X6). The highest amounts of XOS generated were those for X5 (24 to 40%), X4 (33 to 39%), and X3 (11 to 22%). These XOS acted as prebiotics, promoting the growth of the probiotic L. acidophilus, similar to glucose in the MRS broth. These results show the potential of low-lignin sorghum to generate XOS with prebiotic activity, suggesting the application of these compounds in the food industry.


Assuntos
Endo-1,4-beta-Xilanases , Sorghum , Alginatos , Biomassa , Grão Comestível , Eurotiales , Glucuronatos , Peróxido de Hidrogênio , Hidrólise , Lignina/química , Oligossacarídeos/química
4.
Biotechnol Prog ; 38(4): e3265, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35443071

RESUMO

In recent years, residual glycerol from biodiesel synthesis made this chemical a cheap, readily available carbon source to bioprocess, which is also a form to reduce costs in the fuel industry. We propose and describe a bioprocess using fluidized and packed-bed continuous bioreactors to convert this residual glycerol into value-added products such as 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD), largely used in the chemical industry. The bacterium Klebsiella pneumoniae BLh-1, strain isolated by us, was immobilized in the permeable support of polyvinyl alcohol (LentiKats®). After testing different dilution rates (D) for all bioreactor configurations, the best obtained productivities of 1,3-PD was 8.69 g L-1  h-1 at a D = 0.45 h-1 , and 2.99 g L-1  h-1 at a D = 0.30 h-1 for 2,3-BD, both in the packed-bed configuration. In the fluidized-bed reactor, the highest productivity values achieved were 4.48 and 1.16 g L-1  h-1 for 1,3-PD and 2,3-BD, respectively, both at D = 0.33 h-1 . These results show the potential of setting up a bioprocess based on continuous cultures using immobilized K. pneumoniae BLh-1 in PVA matrices in order to efficiently convert the abundant surplus of glycerol into commercially important chemicals such as 1,3-PD and 2,3-BD.


Assuntos
Glicerol , Klebsiella pneumoniae , Biocombustíveis , Reatores Biológicos , Butileno Glicóis , Propilenoglicóis
5.
Food Microbiol ; 101: 103889, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579857

RESUMO

Kombucha is a traditional fermented beverage gaining popularity around the world. So far, few studies have investigated its microbiome using next-generation DNA sequencing, whereas the correlation between the microbial community and metabolites evolution along fermentation is still unclear. In this study, we explore this correlation in a traditionally produced kombucha by evaluating its microbial community and the main metabolites produced. We also investigated the effects of starter cultures processed in three different ways (control, starter culture without liquid suspension (CSC), and a freeze-dried starter culture (FDSC)) to evaluate changes in kombucha composition, such as antioxidant activity and sensory analysis. We identified seven genera of bacteria, including Komagataeibacter, Gluconacetobacter, Gluconobacter, Acetobacter, Liquorilactobacillus, Ligilactobacillus, and Zymomonas, and three genera of yeasts, Dekkera/Brettanomyces, Hanseniaspora, and Saccharomyces. Although there were no statistically significant differences in the acceptance test in sensory analysis, different starter cultures resulted in products showing different microbial and biochemical compositions. FDSC decreased Zymomonas and Acetobacter populations, allowing for Gluconobacter predominance, whereas in the control and CSC kombuchas the first two were the predominant genera. Results suggest that the freeze-drying cultures could be implemented to standardize the process and, despite it changes the microbial community, a lower alcohol content could be obtained.


Assuntos
Bactérias/classificação , Bebidas Fermentadas/microbiologia , Microbiota , Leveduras/classificação , Fermentação , Liofilização
6.
Biotechnol Lett ; 43(10): 2011-2026, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480641

RESUMO

We investigated the fermentation of a mixture of oat and soybean hulls (1:1) subjected to acid (AH) or enzymatic (EH) hydrolyses, with both showing high osmotic pressures (> 1200 Osm kg-1) for the production of ethanol. Yeasts of genera Spathaspora, Scheffersomyces, Sugiymaella, and Candida, most of them biodiverse Brazilian isolates and previously untested in bioprocesses, were cultivated in these hydrolysates. Spathaspora passalidarum UFMG-CM-469 showed the best ethanol production kinetics in suspended cells cultures in acid hydrolysate, under microaerobic and anaerobic conditions. This strain was immobilized in LentiKats® (polyvinyl alcohol) and cultured in AH and EH. Supplementation of hydrolysates with crude yeast extract and peptone was also performed. The highest ethanol production was obtained using hydrolysates supplemented with crude yeast extract (AH-CYE and EH-CYE) showing yields of 0.40 and 0.44 g g-1, and productivities of 0.39 and 0.29 g (L h)-1, respectively. The reuse of the immobilized cells was tested in sequential fermentations of AH-CYE, EH-CYE, and a mixture of acid and enzymatic hydrolysates (AEH-CYE) operated under batch fluidized bed, with ethanol yields ranging from 0.31 to 0.40 g g-1 and productivities from 0.14 to 0.23 g (L h)-1. These results warrant further research using Spathaspora yeasts for second-generation ethanol production.


Assuntos
Células Imobilizadas , Etanol , Glycine max/metabolismo , Saccharomycetales , Xilose/metabolismo , Avena/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Etanol/análise , Etanol/metabolismo , Fermentação , Lignina/metabolismo , Saccharomycetales/citologia , Saccharomycetales/metabolismo
7.
Braz J Microbiol ; 52(3): 1225-1233, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34008152

RESUMO

We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.


Assuntos
Escherichia coli/enzimologia , Transglutaminases/biossíntese , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Reatores Biológicos , Meios de Cultura , Escherichia coli/genética , Glucose , Plasmídeos/genética , Transglutaminases/genética
8.
Appl Biochem Biotechnol ; 192(4): 1147-1162, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32700204

RESUMO

K. pneumoniae BLh-1 strain was genetically modified aiming at obtaining high ethanol productivity in cultivations using residual glycerol from biodiesel synthesis as substrate. The recombinant strain K. pneumoniae Kp17 was obtained by inserting the multicopy plasmid pTOPOBL17 containing the AdhE gene, and its own promoter, from K. pneumoniae BLh-1. Influence of Fe2+ supplementation and initial glycerol concentration on culture conditions were analyzed, both in rotatory shaker and in batch bioreactors. In the bioreactor cultures, K. pneumoniae Kp17 strain produced 4.5 g L-1 of ethanol (productivity of 0.50 g L-1 h-1 and yields of 0.15 g g-1) after 24-h cultivation, corresponding to an increase of approximately 40% in ethanol concentration compared to wild strain, K. pneumoniae BLh-1. Best conditions were then applied in exponential fed-batch bioreactors, with final ethanol concentration of 17.30 g L-1 (productivity of 0.59 g L-1 h-1 and yields of 0.16 g g-1) after 30 h of feeding, representing 11.5% of increment in titer of ethanol compared to the wild strain. Mutant cells kept 92.5% of the plasmids under batch in 24 h, and 71.9% under fed-batch after 27 h of exponential feeding. The findings in this work show the possibility of using a simple approach to genetically modify K. pneumoniae to be employed this versatile bacterium for the bioconversion of residual glycerol into ethanol.


Assuntos
Técnicas de Cultura Celular por Lotes , DNA Recombinante/genética , Etanol/metabolismo , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Biotecnologia , Biotransformação , Cinética , Klebsiella pneumoniae/crescimento & desenvolvimento
9.
Bioprocess Biosyst Eng ; 43(9): 1689-1701, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32356215

RESUMO

Production of 2,3-butanediol (2,3-BD) by Pantoea agglomerans strain BL1 was investigated using soybean hull hydrolysate as substrate in batch reactors. The cultivation media consisted of a mixture of xylose, arabinose, and glucose, obtained from the hemicellulosic fraction of the soybean hull biomass. We evaluated the influence of oxygen supply, pH control, and media supplementation on the growth kinetics of the microorganism and on 2,3-BD production. P. agglomerans BL1 was able to simultaneously metabolize all three monosaccharides present in the broth, with average conversions of 75% after 48 h of cultivation. The influence of aeration conditions employed demonstrated the mixed acid pathway of 2,3-BD formation by enterobacteria. Under fully aerated conditions (2 vvm of air), up to 14.02 g L-1 of 2.3-BD in 12 h of cultivation were produced, corresponding to yields of 0.53 g g-1 and a productivity of 1.17 g L-1 h-1, the best results achieved. These results suggest the production potential of 2,3-BD by P. agglomerans BL1, which has been recently isolated from an environmental consortium. The present work proposes a solution for the usage of the hemicellulosic fraction of agroindustry biomasses, carbohydrates whose utilization are not commonly addressed in bioprocess.


Assuntos
Reatores Biológicos , Butileno Glicóis/metabolismo , Glycine max/química , Pantoea/crescimento & desenvolvimento
10.
Bioprocess Biosyst Eng ; 43(8): 1391-1402, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32206907

RESUMO

Lipases CAL-B, TLL, and RML were used in the synthesis of free fatty acids of grape seed oil as heterogeneous substrate. The best enzyme was used to optimize the reaction variables temperature, enzyme content, and molar ratio of water:oil in batch reactions using experimental planning. The ideal conditions to produce free fatty acids using pure RML were 45 °C, 12:1 substrate molar ratio, and 15% enzyme, resulting in 66% of oil hydrolysis and a productivity of 0.54 mol L-1 min-1 in 4 h of reaction at 180 rpm. Repeated batches of reaction were performed testing the operational stability of RML, results showing that this enzyme could be used for at least 20 cycles keeping more than 80% of its initial activity, suggesting its potential use in industrial processes. The synthesis of free fatty acids was then evaluated in continuous reactions using packed-bed reactor (PBR). The highest productivity in the continuous process was 6.85 mol L-1 min-1, using only RML, showing an operational stability higher than 80% of its initial conversion capacity after 11 days of operation, at a flow rate of 0.13 mL min-1 at 45 °C. We evaluated the use of this hydrolyzed oil as substrate for lactone bioproduction using Galactomyces geotrichum UFMG-CM-Y3276, G. geotrichum UFMG-CM-Y3558, and Geotrichum klebahnii UFMG-CM-Y3014 screened for their oil-hydrolysis ability. Volatile compounds were qualitatively identified in GC-MS as γ-octalactone and γ-nonalactone.


Assuntos
Enzimas Imobilizadas/química , Geotrichum/crescimento & desenvolvimento , Lipase/química , Óleos de Plantas/metabolismo , Sementes/química , Vitis/química , Compostos Orgânicos Voláteis/metabolismo , Hidrólise , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA