Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(3): 2161-2196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36995170

RESUMO

Oilseeds are sources of not only major compounds such as oil and meal but also of bioactive compounds. Their conventional extraction is related to long extraction time, large non-renewable solvent consumption, high temperature, and therefore, high energy consumption. Ultrasound-assisted extraction (UAE) has emerged as a new and green technology, which can accelerate and/or improve the extraction process of these compounds. Moreover, the possibility of using renewable solvents in the UAE enhances its application and allows obtaining both extracted and remaining products more compatible with current human consumption requirements. This article examines the mechanisms, concepts, and factors that impact oilseeds' UAE with an emphasis on the extraction yield and quality of oil, meal, and bioactive compounds. Furthermore, the effects of combining UAE with other technologies are addressed. Gaps detected in the analyzed literature about oilseed treatment and quality and properties of products, in addition to perspectives about their uses as food ingredients, are also included. Moreover, it highlights the need for increasing research on process scalability, on environmental and economic impacts of the whole process, and on the phenomenological description about the effect of process variables on extraction performances, which will be a key tool for process design, optimization, and control. Understanding ultrasound processing techniques for the extraction of different compounds from oilseeds will serve as useful information for fats and oils and meal scientists in academia and industry to explore the possibility of employing this sustainable approach during the extraction treatment of various crops.


Assuntos
Ingredientes de Alimentos , Humanos , Solventes , Óleos de Plantas , Produtos Agrícolas
2.
Compr Rev Food Sci Food Saf ; 21(3): 2587-2614, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279942

RESUMO

Monoglyceride (MG)-based oleogelation is an effective strategy to create soft matter structures with the functionality of fats, but with a nutritional profile similar to edible oils. MG oleogels are mainly studied to replace or reduce trans and saturated fats as well as to develop novel products with improved physical and organoleptic properties. The process consists of direct dispersion of MGs into the oil at temperatures above the melting point. This is followed by a cooling period in which the gelator network is formed, entrapping the oil in a crystalline structure. MG composition and concentration, oil type, process temperatures, stirring speed, shear rate during cooling, and storage time play a role in the kinetics of MG crystallization within an MG-oil system, which leads to the formation of lipid materials with different properties. A deep understanding of MG oleogelation processing parameters allows for the tailoring of oleogel properties to meet desirable characteristics as solid fat replacers. This review provides insight regarding manipulating physical process parameters to engineer structures with specific functionality. Furthermore, ultrasound technologies and optimization methodologies are discussed as tools for the production of oleogels with specific properties based on their potential use as well as the development of bi- and multi-gelators oleogels using MGs. Finally, the food applications in which MG oleogels have been tested are summarized in addition to the identified gaps that require further research.


Assuntos
Monoglicerídeos , Compostos Orgânicos , Cristalização , Monoglicerídeos/química , Compostos Orgânicos/química , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA