Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33968, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071625

RESUMO

Yacon is a tuber known as a healthy food due to its effects as an antidiabetic, anti-inflammatory, anticancer, and prebiotic agent; it is rich in fructooligosaccharides (FOS) and antioxidants, and due to its sweet taste and low-calorie content, it is used as a substitute for ordinary sugar. This research aimed to evaluate the influence of the composition of the feed and the microencapsulation process by spray drying (SD) on the properties of a yacon powder mixture (YP). Response surface methodology with a central composite design with a face-centered composition (α = 1) was used, considering the independent variables: inulin (IN) (3-5% w/w), maltodextrin (MD) (3-5% w/w), air inlet temperature (AIT) (140-160 °C), air outlet temperature (AOT) (75-85 °C) and atomizer disc speed (ADS) (18000-22000 rpm), and the dependent variables: moisture (Xw), water activity (aw), hygroscopicity (Hy), solubility (S), particle size (percentile D10, D50, and D90), total phenols (TP), antioxidant capacity (ABTS and DPPH), color (CIE-Lab*) and yield (Yi). The suspension formulation contained xanthan gum (0.167 %) and a mixture of ascorbic and citric acids (0.3 %). The aw and Xw values of the YP guarantee its microbiological stability; however, the process formulation produces a complex matrix (FOS- sugars- MD - IN) with high affinity for water, which favors adsorption phenomena (hygroscopic material) and high reconstitution (high solubility). The independent variables that best fit the experimental optimization criteria were: IN = 3.0 %, MD = 5.0 %, AIT = 143.7 °C, AOT = 80.1 °C, ADS = 22000 rpm, where Yi = 84.2 %, and the quality of the YP: Xw = 2.4 %, a w  = 0.220, Hy = 23.0 %, S = 96.9 %, D10 = 10.6 µm, D50 = 23.4 µm and D90 = 169.3 µm, TP = 1228.2 mg gallic acid equivalent/100 g, ABTS = 2295.9 mg Trolox equivalent (TE)/100 g, DPPH = 5192.3 mg TE/100 g, L* = 80.5, a* = 5.1 and b* = 17.4. SD is an effective technology that positively impacts the development of new food products. In addition, the YP could have multipurpose applications for the industry, generating value in this agri-chain.

2.
Heliyon ; 9(9): e19577, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809402

RESUMO

The research objective was to experimentally optimize the fluidized bed agglomeration process of an agglomerated blackberry powder mixture (ABPM) using the response surface methodology. As a raw material, a powdered mixture of blackberry from Castile (Rubus glaucus Benth) obtained by spray drying (SD) was used. In the evaluation of the agglomeration process, the response surface methodology was applied using a central design with a face-centered composition (α = 1), considering the independent variables: fluidisation air inlet temperature (T) (50-70 °C), the binder solution atomization air pressure (P) (1-2 bar) and process time (t) (20-35 min); and the dependent variable: moisture content (Xw), solubility (S), wettability (We), apparent density (ρa), total phenols (TP), radical scavenging (ABTS·+ and DPPH· methods), anthocyanins (Ant) (cyanidin-3-glucoside (C3G)), ellagic acid (EA) and vitamin C (Vit. C). In general, the ABPM exhibited higher porosity and particle size, which generated changes in S, We and ρa, and a better rehydration capacity of the ABPM. The optimal process conditions (T = 70 °C, P = 1.7 bar and t = 21.7 min) defined the most favourable attributes of the ABPM (Xw = 9.7 ± 0.1%, S = 74.9 ± 4.9%, We = 13.7 ± 3.6 min, ρa = 0.312 ± 0.009 g/mL, TP = 4084.6 ± 30.6 mg AGE/100g dry base (db), ABTS·+ = 4511.4 ± 124.5 mg TE/100 g db, DPPH· = 4182.7 ± 66.4 mg TE/100 g db, Ant = 213.6 ± 15.9 mg C3G/100 g db, EA = 1878.2 ± 45.9 mg/100 g db and Vit. C = 29.8 ± 7.4 mg/100 g db. The agglomeration process improved the instantaneous properties and the flow behaviour of the ABPM. Additionally, it offers significant nutritional value with potential use as an instant drink and raw material for the food industry.

3.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1551110

RESUMO

Aunque los cogollos de la palma de iraca pueden ser empleados como fuente para la alimentación humana, la mayoría de la información disponible es para la producción de artesanías. Se evaluó la respuesta a la impregnación al vacío (IV) de cogollos frescos de palma de iraca (CFPI), con una solución isotónica de NaCl (0,6 %). Se utilizó la metodología de superficie de respuesta, con un diseño central compuesto ((=1), considerando las siguientes variables independientes: el diámetro de los cogollos (10-15 mm), el tiempo en la etapa de vacío T1 (3-5 minutos) a presión de vacío (4.1 kPa) y el tiempo en la etapa a presión atmosférica local (85,32 kPa), T2 (3-5 min). Las variables dependientes que se tomaron en cuenta fueron fracción volumétrica de impregnación en la etapa de vacío (X1), deformación volumétrica final (g), fracción volumétrica final (X) y porosidad eficaz (Ee). La dinámica de la IV del CFPI identificó que el proceso comporta una expansión volumétrica en la matriz, la cual, finalmente, contribuye a la transferencia de masa del líquido isotónico al interior de la estructura. La microestructura porosa del CFPI es compatible con el proceso de IV, permitiendo los siguientes parámetros de impregnación: g1 (0,451%), X1 (11,457%), g (2,569%), X (17,386%) y Ee (17,036%). La respuesta a la IV en los CFPI identifica a esta matriz alimentaria como adecuada, para la incorporación de componentes fisiológicamente activos.


Although the buds of the iraca palm could be employed as a source of human food, most of the information available is to produce handicrafts. The response to vacuum impregnation (VI) was evaluated in fresh iraca palm buds (FIPB) with an isotonic NaCl solution (0.6 %). The response surface methodology was obtained, with a central compound design (a= 1), considering the following independent variables: The diameter of the buds (10-15 mm), the time in the vacuum stage T1 (3-5 minutes) at vacuum pressure (4.1 kPa) and the time in the stage at local atmospheric pressure (85.32 kPa), T2 (3-5 min). The dependent variables considered were the volumetric fraction of impregnation in the vacuum stage (X1), the final volumetric deformation (g), the final volumetric fraction (X), and the effective porosity (Ee). FIPB VI dynamics identified that the process involves a volumetric expansion in the matrix, which ultimately contributes to the mass transfer of the isotonic liquid into the structure. The porous microstructure of the FIPB is compatible with the VI process, allowing the following impregnation parameters: g1 (0.451 %), X1 (11.457 %), g (2.569 %), X (17.386%), and Ee (17.036 %). The response to VI in FIPB identifies this food matrix as suitable for the incorporation of physiologically active components.

4.
Heliyon ; 9(4): e14857, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025912

RESUMO

Berry consumption is increasing worldwide due to their high content of bioactive compounds. However, such fruits have a very short shelf life. To avoid this drawback and to offer an effective alternative for its consumption at any time of the year, an agglomerated berry powder mix (APB) was developed. The aim of this work was to evaluate the stability of APB during a 6-months-period storage at 3 temperatures. The stability of APB was determined by moisture, aw, antioxidant activity, total phenolics, total anthocyanins, vitamin C, color, phenolic profiles, and MTT assay. APB showed differences in antioxidant activity between 0 and 6 months. It experimented non-enzymatic browning, which was more remarkable at 35 °C. APB at time 0 exhibited growth inhibitory effects against HT-29 human cancer cells. Most properties were significantly modified by storage temperature and time, which induces a significant decreasing of bioactive compounds.

5.
F1000Res ; 12: 1174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38933490

RESUMO

Background: Strawberry is a fruit with a high antioxidant capacity due to its richness in phenolic compounds that suffer a rapid post-harvest deterioration. Spray drying is an alternative to reduce losses; however, these powders present problems of instantanisation, making it necessary to implement agglomeration processes. During storage, powdered food products can undergo a series of changes in their amorphous state from a product initially in a vitreous state to a gummy state, where all properties are substantially modified due to the increased mobility of water in the matrix. Methods: The research objective was to evaluate the storage stability (6 months) of a fluidized bed agglomerated strawberry powder mixture at three temperatures (15, 25 and 25°C), a controlled environment at 65% relative moisture, and PET foil laminated film bags as packaging. Moisture, water activity, bulk and compacted density, Carr and Hausner indices, solubility, hygroscopicity, wettability, angle of repose, antioxidant capacities, total phenols, anthocyanins, vitamin C, color (CIE-Lab) and particle size were monitored. Results: ANOVA showed statistically significant differences (p<0.05) for all dependent variables concerning storage time; storage temperature had no significant effect on S, ABTS, DPPH and Hu. The time-temperature interaction during storage had no significant effect (p>0.05) on S, ABTS, DPPH, Hu and L. The agglomerate showed moisture and aw values that confer excellent stability against deterioration reactions; it retained good fluidity, low cohesiveness, and retentions above 50% for antioxidant capacity, 76% for total phenols, 39% for anthocyanins, and 40% for vitamin C; particle size was retained during the evaluation. The color was only affected in the 35°C treatment from the fifth month onwards. Conclusions: The study will serve as a tool for the determination of the shelf life of the chipboard once the critical values of the attributes selected as predictors of shelf life are defined.


Assuntos
Antioxidantes , Fragaria , Pós , Fragaria/química , Antioxidantes/química , Armazenamento de Alimentos/métodos , Fenóis/análise , Fenóis/química , Temperatura , Secagem por Atomização , Tamanho da Partícula , Antocianinas/química , Antocianinas/análise , Ácido Ascórbico/química , Ácido Ascórbico/análise
6.
J Food Sci Technol ; 59(4): 1610-1618, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250084

RESUMO

The pineapple (Ananas comosus) is an important tropical fruit in the world market. Its pulp has significant nutritional value while the peel and the core, in spite of being high in dietary fibre and nutrients, are generally considered to be agro-industrial waste. The aim of this research was to evaluate the effect that the integrated enzymatic and shear homogenization processes have on the physicochemical stability of pineapple base suspensions (pulp, core, and peel extract). Initially, an enzymatic hydrolysis process was evaluated with a completely randomized factorial design. Independent variables: incubation time (tinc) (1-4 h) and [enzyme] (0-200 ppm). Dependent variables: viscosity (µ) and particle sizes (D[3;2] and D[4;3]). The results showed a reduction of (µ) (70.7%), D[3;2] (54.2%), and D[4;3] (61.8%) for the optimized treatment (tinc = 3.2 h and [enzyme] = 200 ppm) compared to the control (t = 0, without enzyme). The effect of the integrated enzymatic treatment with a serial homogenization process was subsequently evaluated. Independent variables: high-speed homogenization time (t1) (15-20 min), recirculation time in high pressure homogenizer (t2) (3-7 min), and arabic gum (AG) (0.6-1.0%). Dependent variables: total suspension solids (TSS), zeta potential (ζ), µ, spectral stability index (R), D[3;2], and D[4;3]. The application of the integrated processes of enzymatic treatment and serial homogenization was more effective to be able to obtain a stable pineapple-based suspension. The experimental optimization of multiple responses defined t1 = 16.4 min, t2 = 7 min, AG = 0.98%, and TSs = 15.7 ± 0.5%, ζ = - 23.1 ± 0.4 mV, µ = 221 ± 11 cP, D[3;2] = 56.8 ± 2 µm and D[4;3] = 120.6 ± 4 µm and R = 0.58 ± 0.02 were obtained.

7.
Heliyon ; 6(9): e04884, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32984596

RESUMO

Films and edible coatings based on biopolymers have been developed as a packaging, which can be obtained from biodegradable materials and have properties similar to common plastics. These edible materials have many applications in the food industry, preventing mass transfer between the product and the surrounding environment. The objective of this study was to develop and evaluate the physicochemical and mechanical properties of edible films based on cassava starch (CS), whey protein (WP), and beeswax (BW). Response surface methodology has been used and the experiments were carried out based on face-centred composite design. On the other hand, three CS-based controls were formulated to evaluate the effect of the inclusion of WP and BW. The optimization of multiple responses established the optimal formulation: CS (3.17 %), WP (1.30 %), BW (0.50 %), presenting the following response variables: tensile stress (1.92 MPa), elongation (40.4 %), Young's modulus (42.1 MPa), water vapor permeability 1.79 × 10-11 (g mm/s cm2 Pa), swelling capacity (300.3 %), thickness (0.128 mm), moisture content (6.74 %), and colour: lightness (89.9), chromaticity a∗ (-1.8), chromaticity b∗ (7.7), saturation (9.9), tone (101.1°), and yellowness index (17.7). The selection and evaluation of this optimal formulation are essential because it is the material that shows the best possible mechanical and physicochemical properties using the studied components. The results, especially its good mechanical properties and low permeability to water vapour, would allow its application as a coating for fruits, vegetables, among others, effectively delaying its weight loss due to dehydration.

8.
Heliyon ; 6(5): e03974, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32514481

RESUMO

The blackberry is a fragile fruit with a high degree of decomposition, which limits its shelf life. The effect of an edible coating (EC) based on cassava starch, whey protein, beeswax, chitosan, glycerol, stearic acid, and glacial acetic acid on the shelf life of fruit stored at 4 °C was evaluated. The physical, chemical, physical, microbiological, and sensorial quality was evaluated, comparing with a fresh control fruit. The EC had a positive effect on the physicochemical and sensorial properties (mainly in texture, flavor, and aromas), due to the reduction of physiological processes, whereas the color changes are mainly due to anthocyanin losses. After 10 days of storage, weight losses were 39.6% lower and firmness was 81.4% higher; while chitosan reduced the mold and yeast count. The EC increased the useful life of the Andean blackberries by 100%.

9.
Heliyon ; 6(4): e03790, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32373729

RESUMO

Gold honey variety pineapple wastes and sacha inchi sub-products (SIS) were characterized in their elemental, physical, and chemical form in order to formulate a supplemented fermentation substrate (SFS) for the growth Weissella cibaria. The peels and fresh cores of the pineapple (FPP, FPC) were dried and ground (PPP, PPC) and then mixed (MCPP). The following procedures were then undertaken: a physicochemical characterization (moisture, aw, pH, acidity, and soluble solids) of the SIS, FPP, FPC, PPP, and PPC; a proximal characterization of he FPP, FPC, SIS, and SFS; and an elemental analysis (C-N2-H2-O2-S) of the MCPP, SIS, and W. cibaria, which allowed the stoichiometric equation to be defined and the SFS to be formulated. We then evaluated the effect that homogenization and heating to boiling point had on the concentration of reducing sugars in the SFS (g L-1). Finally, W. cibaria´s kinetic fermentation parameters were evaluated in the SFS and in a commercial substrate (control). The results showed FPP and FPC yields of 26.02 ± 0.58 and 14.69 ± 1.13%, respectively; a higher total sugar content in FPC (7.21%) than in FPP (6.65%); a high crude protein content in SIS (56.70%), and a C:N2 ratio of 6.50:1.00. Moreover, the highest concentration of reducing sugars (4.44 ± 0.29 g L-1) in the SFS was obtained with 5 h of hydrolysis under homogenization pre-treatments and heating until boiling. The SFS allowed the adaptation of W. cibaria, and there was a biomass production of 2.93 g L-1 and a viability of 9.88 log CFU mL-1. The formulation of an unconventional fermentation substrate from -Agro-industrial wastes of pineapple and sacha inchi to produce valuable products (such as lactic acid biomass through fermentation), is an excellent perspective for large-scale application.

10.
rev. udca actual. divulg. cient ; 22(1): e1212, Ene-Jun. 2019. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1094779

RESUMO

RESUMEN La creciente necesidad de los consumidores por alimentos saludables ha suscitado, en la industria, la búsqueda de tecnologías efectivas, que ofrezcan alimentos seguros y aceptables, sensorialmente, por el consumidor moderno. Los recubrimientos comestibles adicionados con componentes activos aplicados en estructuras vegetales, además de proteger la estructura y conferir mayor conservación, pueden aportar valor nutricional. El objetivo de la investigación fue evaluar la influencia de un recubrimiento comestible a base de alginato de sodio y calcio sobre los atributos de calidad de la mora de Castilla. Se aplicó la metodología de superficie de respuesta, con un diseño central compuesto cara centrado (21 experimentos), considerando las variables independientes: alginato de sodio (2,0-3,0%), cera de abeja (0,5-1,0%), sucroéster (0,15-0,25%), alginato/glicerol (2,0-3,0). La mejor formulación fue: alginato de sodio (2,85%), cera de abeja (1,00%), alginato de sodio/glicerol (2,0) y sucroéste (0,18%), siendo los atributos de calidad de la mora con el recubrimiento comestible: humedad (83,7±1,7%), actividad de agua (0,964±0,010), pH (2,7±0,0), acidez (2,6±0,0%), °Brix (8,1±0,2%), firmeza (12,3±0,7 N), fenoles totales (105,3±4,5mg AG/100g), actividad antioxidante (ABTS: 962,7±15,1mg Trolox/100g y DPPH: 319,3±9,4mg Trolox/100g), luminosidad (22,5±0,7); cromaticidad a* (8,47±0,88); cromaticidad b* (2,12±0,37) y calcio = 144,6±2,7 mg /200g. Los recubrimientos comestibles adicionados con calcio aplicados en la mora de Castilla representan una alternativa efectiva contra los daños mecánicos del fruto y para conservar su calidad, lo cual, podrá mejorar la vida útil durante el almacenamiento.


ABSTRACT The growing need of consumers for healthy food has led to the search for effective technologies in food industry that offer safe and sensorially acceptable options to the modern consumer. Edible coatings added with active components applied to vegetable structures, besides protecting the structure and conferring greater conservation, can provide nutritional value. The objective of this investigation was to evaluate the influence of an edible coating based on sodium alginate and calcium on the attributes of quality of Andean blackberry of Castilla. The response surface methodology was applied with a composite central design (21 experiments), considering the independent variables: sodium alginate (2.0-3.0%), beeswax (0.5-1.0%), sucroester (0.15-0.25%), sodium alginate/glycerol (2.0-3.0). The best formulation was: sodium alginate (2.85%), beeswax (1.00%), sodium alginate/glycerol (2.0%) and sucroester (0.162%), being the quality attributes of the of the blackberry with the edible coating: moisture (83.7±1.7%), water activity (0.964±0.010), pH (2.7±0.0), acidity (2.6±0.0%), °Brix (8.1±0.2%), firmness (12.3±0.7 N); total phenols (105.3±4.5 mg GA/100 g), antioxidant activity (ABTS: 962.7±15.1 mg Trolox/100 g) and DPPH: 319.3±9.4 mg Trolox/100 g), lightness (22,5±0,7); chromaticity a* (8,47±0,88); chromaticity b* (2,12±0,37) and calcium=144,6±2,7 mg/200g. Edible coatings added with calcium applied to Andean blackberry of Castilla represent an effective alternative against mechanical damages of the fruit and to conserve its quality, which will improve shelf life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA