Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38936832

RESUMO

d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses. ONE-SENTENCE SUMMARY: This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.


Assuntos
Etanol , Fermentação , Oxigênio , Xilose , Xilose/metabolismo , Etanol/metabolismo , Oxigênio/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Cinética , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Aerobiose
2.
Life (Basel) ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888102

RESUMO

The development of tools to predict the photobioreactors' (PBRs) productivity is a significant concern in biotechnology. To this end, it is required to know the light availability inside the cultivation unit and combine this information with a suitable kinetic expression that links the distribution of radiant energy with the cell growth rate. In a previous study, we presented and validated a methodology for assessing the radiative properties necessary to address the light distribution inside a PBR for varying illuminating conditions through the cultivation process of a phototrophic microorganism. Here, we sought to utilise this information to construct a predictive tool to estimate the productivity of an autotrophic bioprocess carried out in a 100 [L] tubular photobioreactor (TPBR). Firstly, the time-dependent optical properties over ten batch cultures of L. platensis were calculated. Secondly, the local volumetric rate of photon absorption was assessed based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. Lastly, a kinetic expression valid for low illumination conditions has been utilised to reproduce all the cultures' experimentally obtained dry weight biomass concentration values. Taken together, time-dependent radiative properties and the kinetic model produced a valuable tool for the study and scaling up of TPBRs.

3.
Sensors (Basel) ; 22(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632126

RESUMO

When managing a constellation of nanosatellites, one may leverage this structure to improve the mission's quality-of-service (QoS) by optimally distributing the tasks during an orbit. In this sense, this research proposes an offline energy-aware task scheduling problem formulation regarding the specifics of constellations, by considering whether the tasks are individual, collective, or stimulated to be redundant. By providing such an optimization framework, the idea of estimating an offline task schedule can serve as a baseline for the constellation design phase. For example, given a particular orbit, from the simulation of an irradiance model, the engineer can estimate how the mission value is affected by the inclusion or exclusion of individuals objects. The proposed model, given in the form of a multi-objective mixed-integer linear programming model, is illustrated in this work for several illustrative scenarios considering different sets of tasks and constellations. We also perform an analysis of the Pareto-optimal frontier of the problem, identifying the feasible trade-off points between constellation and individual tasks. This information can be useful to the decision-maker (mission operator) when planning the behavior in orbit.


Assuntos
Algoritmos , Simulação por Computador , Humanos , Fenômenos Físicos
4.
Pest Manag Sci ; 76(1): 296-303, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31206231

RESUMO

BACKGROUND: The formulation of a biodegradable carrier which effectively concentrates microorganisms on air-water interfaces is proposed. This avoids the dispersion of bacteria into the bulk liquid phase and at the same time prevents their sedimentation. This formulation can be used in biocontrol and bioremediation treatments where the target is at the position of the air-water interface, as in the case of the treatment of rice diseases caused by Sclerotium oryzae and Rhizoctonia complex. The carrier is an oil-in-water (O/W) emulsion which contains lecithin and chitosan in both phases at different proportions. In a stable formulation, bacteria that are adsorbed onto the surface of oil droplets are carried with them and flowed upward to the air-water interface, due to buoyancy forces. RESULTS: When using the biodegradable carrier, it is possible to recover at least 15-fold more bacteria from the air-water interface than in the case of using the aqueous formulation. CONCLUSION: The emulsion O/W is applied to the surface by dripping, resulting in a homogeneous two-dimensional film distribution. With this application device, the number of bacteria at the air-water interface is significantly increased. © 2019 Society of Chemical Industry.


Assuntos
Bactérias , Água , Emulsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA