Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543443

RESUMO

Tara gum, a natural biopolymer extracted from Caesalpinia spinosa seeds, was investigated in this study. Wall materials were produced using spray drying, forced convection, and vacuum oven drying. In addition, a commercial sample obtained through mechanical methods and direct milling was used as a reference. The gums exhibited low moisture content (8.63% to 12.55%), water activity (0.37 to 0.41), bulk density (0.43 to 0.76 g/mL), and hygroscopicity (10.51% to 11.42%). This allows adequate physical and microbiological stability during storage. Polydisperse particles were obtained, ranging in size from 3.46 µm to 139.60 µm. Fourier transform infrared spectroscopy characterisation confirmed the polysaccharide nature of tara gum, primarily composed of galactomannans. Among the drying methods, spray drying produced the gum with the best physicochemical characteristics, including higher lightness, moderate stability, smaller particle size, and high glass transition temperature (141.69 °C). Regarding rheological properties, it demonstrated a non-Newtonian pseudoplastic behaviour that the power law could accurately describe. The apparent viscosity of the aqueous dispersions of the gum decreased with increasing temperature. In summary, the results establish the potential of tara gum as a wall material applicable in the food and pharmaceutical industries.

2.
Foods ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338552

RESUMO

Germination is an effective strategy to improve the nutritional and functional quality of Andean grains such as quinoa (Chenopodium quinoa Willd.); it helps reduce anti-nutritional components and enhance the digestibility and sensory aspects of the germinated. This work aimed to evaluate the effect of germination (0, 24, 48, and 72 h) on the physicochemical properties, content of bioactive compounds, and antioxidant capacity of three varieties of quinoa: white, red, and black high Andean from Peru. Color, nutritional composition, mineral content, phenolic compounds, flavonoids, and antioxidant activity were analyzed. Additionally, infrared spectra were obtained to elucidate structural changes during germination. The results showed color variations and significant increases (p < 0.05) in proteins, fiber, minerals, phenolic compounds, flavonoids, and antioxidant capacity after 72 h of germination, attributed to the activation of enzymatic pathways. In contrast, the infrared spectra showed a decrease in the intensity of functional groups -CH-, -CH2-, C-OH, -OH, and C-N. Correlation analysis showed that flavonoids mainly contributed to antioxidant activity (r = 0.612). Germination represents a promising alternative to develop functional ingredients from germinated quinoa flour with improved nutritional and functional attributes.

3.
Polymers (Basel) ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399913

RESUMO

There is a growing emphasis on seeking stabilizing agents with minimal transformation, prioritizing environmentally friendly alternatives, and actively contributing to the principles of the circular economy. This research aimed to assess the stability of a novel spray-dried hydrocolloid from high Andean algae when introduced into an aqueous solution. Nostoc sphaericum freshwater algae were subject to atomization, resulting in the production of spray-dried hydrocolloid (SDH). Subsequently, suspension solutions of SDH were meticulously prepared at varying pH levels and gelling temperatures. These solutions were then stored for 20 days to facilitate a comprehensive evaluation of their stability in suspension. The assessment involved a multifaceted approach, encompassing rheological analysis, scrutiny of turbidity, sedimentation assessment, ζ-potential, and measurement of particle size. The findings from these observations revealed that SDH exhibits a dilatant behavior when in solution, signifying an increase in with higher shear rate. Furthermore, it demonstrates commendable stability when stored under ambient conditions. SDH is emerging as a potential alternative stabilizer for use in aqueous solutions due to its easy extraction and application.

4.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067603

RESUMO

Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.


Assuntos
Chenopodium quinoa , Nanocápsulas , Solanum tuberosum , Amido , Antioxidantes/química , Goma Arábica/química , Antocianinas/análise , Temperatura , Baías , Fenóis/análise
5.
Polymers (Basel) ; 15(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836034

RESUMO

Iron deficiency leads to ferropenic anemia in humans. This study aimed to encapsulate iron-rich ovine and bovine erythrocytes using tara gum and native potato starch as matrices. Solutions containing 20% erythrocytes and different proportions of encapsulants (5, 10, and 20%) were used, followed by spray drying at 120 and 140 °C. Iron content in erythrocytes ranged between 2.24 and 2.52 mg of Fe/g; microcapsules ranged from 1.54 to 2.02 mg of Fe/g. Yields varied from 50.55 to 63.40%, and temperature and encapsulant proportion affected moisture and water activity. Various red hues, sizes, and shapes were observed in the microcapsules. SEM-EDS analysis revealed the surface presence of iron in microcapsules with openings on their exterior, along with a negative zeta potential. Thermal and infrared analyses confirmed core encapsulation within the matrices. Iron release varied between 92.30 and 93.13% at 120 min. Finally, the most effective treatments were those with higher encapsulant percentages and dried at elevated temperatures, which could enable their utilization in functional food fortification to combat anemia in developing countries.

6.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446623

RESUMO

Native potato clones grown in Peru contain bioactive compounds beneficial to human health. This study aimed to optimize the spray-drying nanoencapsulation of native potato phenolic extracts utilizing a central composite design and response surface methodology, obtaining the optimal treatment to an inlet temperature of 120 °C and an airflow of 141 L/h in the nano spray dryer B-90, which allowed maximizing the yield of encapsulation, antioxidant capacity (DPPH), encapsulation efficiency (EE), total phenolic compounds, and total flavonoids; on the other hand, it allowed minimizing hygroscopicity, water activity (Aw), and moisture. Instrumental characterization of the nanocapsules was also carried out, observing a gain in lightness, reddening of the color, and spherical nanoparticles of heterogeneous size (133.09-165.13 nm) with a negative ζ potential. Thermal, infrared, and morphological analyses confirmed the encapsulation of the core in the wall materials. Furthermore, an in vitro release study of phenolic compounds in an aqueous solution achieved a maximum value of 9.86 mg GAE/g after 12 h. Finally, the obtained nanocapsules could be used in the food and pharmaceutical industry.


Assuntos
Nanocápsulas , Nanopartículas , Solanum tuberosum , Humanos , Secagem por Atomização , Antioxidantes/química , Nanopartículas/química , Água/química
7.
Foods ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444249

RESUMO

Native potatoes (Solanum tuberosum spp. andigena) have diverse pigments and are cultivated in Peru's high Andean regions; they are characterized by containing bioactive compounds that prevent various degenerative diseases. The study aimed to evaluate the physicochemical and sensory quality in chips of native potato clones grown at 3496 m altitude, for which the potatoes were cut into slices and fried in extra virgin olive oil at 180 °C for 200 s. This was determined by proximal analysis, reducing sugars, minerals, color, antioxidant capacity (AC), total phenolic compounds (TPC), and anthocyanins in fresh and chips; an instrumental characterization by FTIR and SEM and sensory tests were also performed. The native potatoes presented low moisture and reduced sugar contents; when frying, their bioactive properties improved, increasing AC, TPC, and trace elements, such as K, Mg, Ca, P, Fe, and Zn. To conclude, fresh clones have high yields in the field and are an essential source of nutrients and bioactive; the salt-free chips of clone B presented better physicochemical properties and greater sensory acceptance, closely followed by clone A. Both clones could be used as raw material by food companies that produce snacks to benefit high Andean agricultural producers.

8.
Foods ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174411

RESUMO

Ethanolic extracts of propolis and bee honey contain substances beneficial to human health. Mixtures of wall materials were compared in spray-drying microencapsulation of ethanolic extracts of propolis and bee honey rich in bioactive compounds. Maltodextrin and tara gum were used to obtain microencapsulates A, and modified native potato starch and tara gum were used for microencapsulates B. High values of phenolic compounds, flavonoids, and antioxidant capacity were obtained in microcapsules A and B, and the results obtained in terms of encapsulation efficiency, yield, hygroscopicity, solubility, moisture, Aw, bulk density, and color were typical of the spray-drying process. On the other hand, spherical and elliptical microparticles of sizes between 7.83 and 53.7 µm with light and medium stability were observed. Thermogravimetric properties were similar in both microencapsulates; total organic carbon, SEM-EDS, and FTIR analyses corroborated the encapsulation. X-ray diffractogram exhibited amorphous structures, and the release kinetics of phenolic compounds presented high values from 8.13 to 12.58 mg GAE/g between 7 and 13 h. Finally, modified potato starch is a better encapsulant than maltodextrin because it has better core protection and controlled release of the encapsulated bioactive compounds.

9.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234547

RESUMO

The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.

10.
Foods ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885349

RESUMO

Ferropenic anemy is the leading iron deficiency disease in the world. The aim was to encapsulate erythrocytes extracted from the blood of Cavia porcellus, in matrices of tara gum and native potato starch. For microencapsulation, solutions were prepared with 20% erythrocytes; and encapsulants at 5, 10, and 20%. The mixtures were spray-dried at 120 and 140 °C. The iron content in the erythrocytes was 3.30 mg/g and between 2.32 and 2.05 mg/g for the encapsulates (p < 0.05). The yield of the treatments varied between 47.84 and 58.73%. The moisture, water activity, and bulk density were influenced by the temperature and proportion of encapsulants. The total organic carbon in the atomized samples was around 14%. The particles had diverse reddish tonalities, which were heterogeneous in their form and size; openings on their surface were also observed by SEM. The particle size was at the nanometer level, and the zeta potential (ζ) indicated a tendency to agglomerate and precipitation the solutions. The presence of iron was observed on the surface of the atomized by SEM-EDX, and FTIR confirmed the encapsulation due to the presence of the chemical groups OH, C-O, C-H, and N-H in the atomized. On the other hand, high percentages of iron release in vitro were obtained between 88.45 and 94.71%. The treatment with the lowest proportion of encapsulants performed at 140 °C obtained the best results and could potentially be used to fortify different functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA