Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780438

RESUMO

Permutation entropy and its associated frameworks are remarkable examples of physics-inspired techniques adept at processing complex and extensive datasets. Despite substantial progress in developing and applying these tools, their use has been predominantly limited to structured datasets such as time series or images. Here, we introduce the k-nearest neighbor permutation entropy, an innovative extension of the permutation entropy tailored for unstructured data, irrespective of their spatial or temporal configuration and dimensionality. Our approach builds upon nearest neighbor graphs to establish neighborhood relations and uses random walks to extract ordinal patterns and their distribution, thereby defining the k-nearest neighbor permutation entropy. This tool not only adeptly identifies variations in patterns of unstructured data but also does so with a precision that significantly surpasses conventional measures such as spatial autocorrelation. Additionally, it provides a natural approach for incorporating amplitude information and time gaps when analyzing time series or images, thus significantly enhancing its noise resilience and predictive capabilities compared to the usual permutation entropy. Our research substantially expands the applicability of ordinal methods to more general data types, opening promising research avenues for extending the permutation entropy toolkit for unstructured data.

2.
Sci Rep ; 13(1): 12695, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542059

RESUMO

While extensive literature exists on the COVID-19 pandemic at regional and national levels, understanding its dynamics and consequences at the city level remains limited. This study investigates the pandemic in Maringá, a medium-sized city in Brazil's South Region, using data obtained by actively monitoring the disease from March 2020 to June 2022. Despite prompt and robust interventions, COVID-19 cases increased exponentially during the early spread of COVID-19, with a reproduction number lower than that observed during the initial outbreak in Wuhan. Our research demonstrates the remarkable impact of non-pharmaceutical interventions on both mobility and pandemic indicators, particularly during the onset and the most severe phases of the emergency. However, our results suggest that the city's measures were primarily reactive rather than proactive. Maringá faced six waves of cases, with the third and fourth waves being the deadliest, responsible for over two-thirds of all deaths and overwhelming the local healthcare system. Excess mortality during this period exceeded deaths attributed to COVID-19, indicating that the burdened healthcare system may have contributed to increased mortality from other causes. By the end of the fourth wave, nearly three-quarters of the city's population had received two vaccine doses, significantly decreasing deaths despite the surge caused by the Omicron variant. Finally, we compare these findings with the national context and other similarly sized cities, highlighting substantial heterogeneities in the spread and impact of the disease.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Cidades/epidemiologia
3.
Sci Rep ; 13(1): 3351, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997547

RESUMO

Cryptocurrencies are considered the latest innovation in finance with considerable impact across social, technological, and economic dimensions. This new class of financial assets has also motivated a myriad of scientific investigations focused on understanding their statistical properties, such as the distribution of price returns. However, research so far has only considered Bitcoin or at most a few cryptocurrencies, whilst ignoring that price returns might depend on cryptocurrency age or be influenced by market capitalization. Here, we therefore present a comprehensive investigation of large price variations for more than seven thousand digital currencies and explore whether price returns change with the coming-of-age and growth of the cryptocurrency market. We find that tail distributions of price returns follow power-law functions over the entire history of the considered cryptocurrency portfolio, with typical exponents implying the absence of characteristic scales for price variations in about half of them. Moreover, these tail distributions are asymmetric as positive returns more often display smaller exponents, indicating that large positive price variations are more likely than negative ones. Our results further reveal that changes in the tail exponents are very often simultaneously related to cryptocurrency age and market capitalization or only to age, with only a minority of cryptoassets being affected just by market capitalization or neither of the two quantities. Lastly, we find that the trends in power-law exponents usually point to mixed directions, and that large price variations are likely to become less frequent only in about 28% of the cryptocurrencies as they age and grow in market capitalization.

4.
Sci Rep ; 12(1): 15746, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130960

RESUMO

Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.


Assuntos
Criminosos , Crime , Humanos , Aprendizado de Máquina , Polícia
5.
Sci Rep ; 12(1): 6858, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477955

RESUMO

Corruption crimes demand highly coordinated actions among criminal agents to succeed. But research dedicated to corruption networks is still in its infancy and indeed little is known about the properties of these networks. Here we present a comprehensive investigation of corruption networks related to political scandals in Spain and Brazil over nearly three decades. We show that corruption networks of both countries share universal structural and dynamical properties, including similar degree distributions, clustering and assortativity coefficients, modular structure, and a growth process that is marked by the coalescence of network components due to a few recidivist criminals. We propose a simple model that not only reproduces these empirical properties but reveals also that corruption networks operate near a critical recidivism rate below which the network is entirely fragmented and above which it is overly connected. Our research thus indicates that actions focused on decreasing corruption recidivism may substantially mitigate this type of organized crime.


Assuntos
Crime , Criminosos , Brasil , Análise por Conglomerados , Humanos , Espanha
6.
PLoS One ; 15(9): e0239699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966344

RESUMO

The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economic activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.


Assuntos
Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Densidade Demográfica , Distribuição por Idade , Betacoronavirus , Brasil/epidemiologia , COVID-19 , Cidades/epidemiologia , Serviços de Saúde/provisão & distribuição , Serviços de Saúde/tendências , Humanos , Pandemias/estatística & dados numéricos , SARS-CoV-2 , Fatores de Tempo
7.
Sci Rep ; 10(1): 7664, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376993

RESUMO

Machine learning algorithms have been available since the 1990s, but it is much more recently that they have come into use also in the physical sciences. While these algorithms have already proven to be useful in uncovering new properties of materials and in simplifying experimental protocols, their usage in liquid crystals research is still limited. This is surprising because optical imaging techniques are often applied in this line of research, and it is precisely with images that machine learning algorithms have achieved major breakthroughs in recent years. Here we use convolutional neural networks to probe several properties of liquid crystals directly from their optical images and without using manual feature engineering. By optimizing simple architectures, we find that convolutional neural networks can predict physical properties of liquid crystals with exceptional accuracy. We show that these deep neural networks identify liquid crystal phases and predict the order parameter of simulated nematic liquid crystals almost perfectly. We also show that convolutional neural networks identify the pitch length of simulated samples of cholesteric liquid crystals and the sample temperature of an experimental liquid crystal with very high precision.

8.
Sci Rep ; 9(1): 1440, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723248

RESUMO

The efficient market hypothesis has far-reaching implications for financial trading and market stability. Whether or not cryptocurrencies are informationally efficient has therefore been the subject of intense recent investigation. Here, we use permutation entropy and statistical complexity over sliding time-windows of price log returns to quantify the dynamic efficiency of more than four hundred cryptocurrencies. We consider that a cryptocurrency is efficient within a time-window when these two complexity measures are statistically indistinguishable from their values obtained on randomly shuffled data. We find that 37% of the cryptocurrencies in our study stay efficient over 80% of the time, whereas 20% are informationally efficient in less than 20% of the time. Our results also show that the efficiency is not correlated with the market capitalization of the cryptocurrencies. A dynamic analysis of informational efficiency over time reveals clustering patterns in which different cryptocurrencies with similar temporal patterns form four clusters, and moreover, younger currencies in each group appear poised to follow the trend of their 'elders'. The cryptocurrency market thus already shows notable adherence to the efficient market hypothesis, although data also reveals that the coming-of-age of digital currencies is in this regard still very much underway.

9.
Proc Natl Acad Sci U S A ; 115(37): E8585-E8594, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150384

RESUMO

Art is the ultimate expression of human creativity that is deeply influenced by the philosophy and culture of the corresponding historical epoch. The quantitative analysis of art is therefore essential for better understanding human cultural evolution. Here, we present a large-scale quantitative analysis of almost 140,000 paintings, spanning nearly a millennium of art history. Based on the local spatial patterns in the images of these paintings, we estimate the permutation entropy and the statistical complexity of each painting. These measures map the degree of visual order of artworks into a scale of order-disorder and simplicity-complexity that locally reflects qualitative categories proposed by art historians. The dynamical behavior of these measures reveals a clear temporal evolution of art, marked by transitions that agree with the main historical periods of art. Our research shows that different artistic styles have a distinct average degree of entropy and complexity, thus allowing a hierarchical organization and clustering of styles according to these metrics. We have further verified that the identified groups correspond well with the textual content used to qualitatively describe the styles and the applied complexity-entropy measures can be used for an effective classification of artworks.

10.
R Soc Open Sci ; 5(5): 180200, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892455

RESUMO

We present a theoretical approach to control bovine brucellosis. We have used individual-based modelling, which is a network-type alternative to compartmental models. Our model thus considers heterogeneous populations, and spatial aspects such as migration among herds and control actions described as pulse interventions are also easily implemented. We show that individual-based modelling reproduces the mean field behaviour of an equivalent compartmental model. Details of this process, as well as flowcharts, are provided to facilitate the reproduction of the presented results. We further investigate three numerical examples using real parameters of herds in the São Paulo state of Brazil, in scenarios which explore eradication, continuous and pulsed vaccination and meta-population effects. The obtained results are in good agreement with the expected behaviour of this disease, which ultimately showcases the effectiveness of our theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA