Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Microbiol ; 120: 104495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431315

RESUMO

This study assessed the fate of a Salmonella enterica cocktail (S. Typhimurium, S. Enteritidis, S. Newport, S. Agona and S. Anatum; initial counts 3.5 log CFU/g) in minimally processed sliced chard, broccoli and red cabbage at 16 conditions of different temperature (7, 14, 21 and 37 °C) and relative humidity (RH; 15, 35, 65 and 95%) over six days (144 h). Linear regression was used to estimate the rate change of Salmonella in cut vegetables as a function of temperature and relative humidity (RH). R2 value of 0.85, 0.87, and 0.78 were observed for the rates of change in chard, broccoli, and red cabbage, respectively. The interaction between temperature and RH was significant in all sliced vegetables. Higher temperatures and RH values favored Salmonella growth. As temperature or RH decreased, the rate of S. enterica change varied by vegetable. The models developed here can improve risk management of Salmonella in fresh cut vegetables.


Assuntos
Beta vulgaris , Brassica , Salmonella enterica , Temperatura , Microbiologia de Alimentos , Contaminação de Alimentos/análise , Umidade , Contagem de Colônia Microbiana , Salmonella , Verduras
2.
Food Microbiol ; 119: 104453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225042

RESUMO

This study assessed the efficacy of ozone (bubble diffusion in water; 6.25 ppm) and photodynamic inactivation (PDT) using curcumin (75 µM) as photosensitizer (LED emission 430-470 nm; 33.6 mW/cm2 irradiance; 16.1, 20.2, and 24.2 J/cm2 light dose) against the Norovirus surrogate bacteriophage MS2 in Brazilian berries (black mulberry and pitanga) and surfaces (glass and stainless steel). Contaminated berries and surfaces were immersed in ozonized water or exposed to PDT-curcumin for different time intervals. Transmission electron microscopy was used to assess the effects of the treatments on MS2 viral particles. The MS2 inactivation by ozone and PDT-curcumin varied with the fruit and the surface tested. Ozone reduced the MS2 titer up to 3.6 log PFU/g in black mulberry and 4.1 log PFU/g in pitanga. On surfaces, the MS2 reduction by ozone reached 3.6 and 4.8 log PFU/cm2 on glass and stainless steel, respectively. PDT-curcumin reduced the MS2 3.2 and 4.8 log PFU/g in black mulberry and pitanga and 2.7 and 3.3 log PFU/cm2 on glass and stainless steel, respectively. MS2 particles were disintegrated by exposure of MS2 to ozone and PDT-curcumin on pitanga. Results can contribute to establishing effective practices for controlling NoV in fruits and surfaces, estimated based on MS2 bacteriophage behavior.


Assuntos
Curcumina , Norovirus , Ozônio , Frutas , Levivirus , Aço Inoxidável , Ozônio/farmacologia , Brasil , Curcumina/farmacologia , Água/farmacologia , Inativação de Vírus
3.
Food Res Int ; 172: 112774, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689839

RESUMO

Levels of aflatoxin B1 (AFB1) were measured during the production of wheat craft beer made with wheat malt contaminated with AFB1 (1.23 µg/kg). A wheat craft beer made with non-contaminated wheat malt was produced for comparison purposes. AFB1 was measured after mashing (malt after the mashing process), and in spent grain (spent grains are filtered to collect the wort - remaining sugar-rich liquid), sweet wort, green beer, spent yeast, and in beer. Physicochemical parameters (pH, titratable acidity, color parameters, total soluble solids), sugars, organic acids, alcohols, and phenolics were evaluated after mashing, and in sweet wort, green beer, and beer samples. Density and yeast counts were determined over 120 h of sweet wort fermentation every 24 h. The AFB1 levels in the final beer were 0.22 µg/L, while the spent grains and spent yeasts contained 0.71 ± 0.17 and 0.11 ± 0.03 µg/kg of AFB1, respectively. AFB1 contamination did not influence the final product's physicochemical parameters, density during fermentation, fructose, or glycerol content. Higher yeast counts were observed during the first 48 h of non-contaminated wheat craft beer fermentation, with higher ethanol, citric acid, and propionic acid contents and lower glucose, malic acid, and lactic acid contents compared with beer contaminated with AFB1. Non-contaminated wheat craft beer also had higher concentrations of gallic acid, chlorogenic acid, catechin, procyanidin A2, and procyanidin B1. AFB1 contamination of wheat malt may not affect basic quality parameters in wheat craft beer but can influence the final product's organic acid and phenolic contents. Our findings show that if wheat craft beer is made with contaminated malt, AFB1 can remain in the final product and may pose a risk to consumers.


Assuntos
Triticum , Fermento Seco , Saccharomyces cerevisiae , Cerveja , Fermentação
4.
Int J Food Microbiol ; 370: 109669, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35397415

RESUMO

Many outbreaks involving Salmonella enterica in dehydrated coconut have been reported. Little is known about the survival of S. enterica in dehydrated coconut flakes at common retail or domestic storage conditions. This study evaluated the behavior of a S. enterica cocktail (S. Enteritidis PT4, S. Typhimurium PT4, S. Bredeney, S. Muenster and S. Agona) in conventionally and osmotically dehydrated coconut flakes under four storage regimes: 25 °C for 120 days, 25 °C for 30 days then 7 °C for 90 days, 7 °C for 30 days then 25 °C for 90 days, and 7 °C for 120 days. S. enterica membrane integrity (using with propidium iodide and bis-1,3-dibutylbarbutyric acid) and metabolic activity (using 5-cyano-2,3-ditolyl tetrazolium chloride) were assessed by flow cytometry analysis after dehydration and storage at 7 °C or 25 °C for 120 days. Lower S. enterica inactivation rates (kmax 0.02 to 0.04 1/days) were observed in conventionally dehydrated coconut flakes compared to osmotically dehydrated coconut flakes (kmax 0.16 to 0.20 1/days). Changes in storage temperature did not affect the behavior of S. enterica in conventionally or osmotically dehydrated coconut flakes. Results show that S. enterica inactivation in conventionally dehydrated coconut flakes could be described by log-linear with tail models. S. enterica inactivation in osmotically dehydrated coconut flakes could be described by log-linear with shoulder and tail models. Subpopulations of S. enterica cells with damaged membranes and without metabolic activity were larger in conventionally (32.1% and 90.9%, respectively) than osmotically dehydrated coconut (18.5% and 82.2%, respectively) flakes at the beginning of the storage. Subpopulations of S. enterica cells with damaged membrane decreased by 9.4-14.4%, while cells with membrane potential and intact membrane increased by 23.7 and 24.2% in conventionally dehydrated coconut flakes after 120 days of storage at 7 °C or 25 °C, respectively. Subpopulations of S. enterica with damaged membranes did not change significantly in osmotically dehydrated coconut flakes. Our findings suggest that S. enterica populations decline during storage occurs due in part to membrane integrity losses. These data can contribute to the development of risk management strategies for S. enterica in dehydrated coconut flakes.


Assuntos
Salmonella enterica , Cocos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Cinética , Salmonella enteritidis , Temperatura
5.
Food Microbiol ; 104: 103995, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287814

RESUMO

This study assessed the norovirus (NoV) surrogate bacteriophage MS2 transfer from stainless steel, glass and low-density polypropylene surfaces to raspberry and pitanga fruits. The effect of sodium hypochlorite (100 ppm, 1 min) on MS2 survival on whole fruits, the MS2 survival in sanitized fruits and derived pulps during frozen storage, and in response to preservation technologies (heat, organic acids and salts) was also assessed. The highest (p < 0.05) viral transfer (%) was observed from glass and stainless steel (∼90%) to raspberry, and from glass and polypropylene (∼75%) to pitanga, after 60 min of contact. Sodium hypochlorite reduced (p < 0.05) MS2 titer by 3.5 and 3.8 log PFU/g in raspberry and pitanga, respectively. MS2 decreased (p < 0.05) up to 1.4 log PFU/g in frozen stored sanitized fruits (whole fruits and pulps) after 15 days, with no further changes after 30 days. Thermal treatments reduced MS2 titer (p < 0.05) in both fruit pulps. MS2 inactivation was higher in pitanga pulp. The addition of ascorbic acid, citric acid, sodium benzoate, or sodium metabisulfite had little effect (<1 log PFU/g) on MS2 concentration in either fruit. These results may inform NoV risk management practice in processing and handling of fruits.


Assuntos
Eugenia , Norovirus , Rubus , Frutas , Levivirus/fisiologia , Norovirus/fisiologia
6.
Compr Rev Food Sci Food Saf ; 20(6): 5742-5764, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34668294

RESUMO

Mycotoxins, including aflatoxins (AFs), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FBs), and zearalenone (ZEN), have been reported as beer contaminants. This systematic review and meta-analysis provide the prevalence and concentration of mycotoxins in beers and their worldwide distribution. Mycotoxin's exposure and cancer risk through beer consumption were determined. The overall pooled prevalence of mycotoxins in beers was 31% (95% confidence interval [CI] = 28%-35%; I2  = 90%, p = .00). The most prevalent mycotoxins in beers were DON and its derivatives (53%), OTA (52%), FBs (47%), followed by AFs (12%). Iran (99%), Hungary (95%), Denmark (92%), Armenia (83%), and Cyprus (83%) had the highest mycotoxin prevalence in beers. The global mycotoxins average concentration in beers was 12.52 µg/L (95% CI = 10.70-14.75 µg/L; I2  = 100%, p = .00). DON and its derivatives showed the highest concentration (26.91 µg/L), followed by FBs (23.19 µg/L), ZEN and its derivatives (20.25 µg/L), and AFs (15.65 µg/L). African region had the highest mycotoxins concentration (73.95 µg/L) mostly due to the high levels reported in beers from Cameroon (293.02 µg/L), Malawi (132.34 µg/L), and Eastern Cape province (126.12 µg/L). The meta-regression indicated stability (p ≥ .05) of the global pooled concentration of mycotoxins in beers over the years, whereas FBs concentration increased. The intake of DON and its derivatives, FBs, ZEN and its derivatives, and OTA through beers is of concern in African countries. OTA is also of concern in Brazil and Belgium. Results show high mycotoxins concentration in beers worldwide and highlight the health risks through contaminated beer consumption.


Assuntos
Micotoxinas , Cerveja/análise , Camarões , Contaminação de Alimentos/análise , Micotoxinas/análise , Medição de Risco
7.
Int J Food Microbiol ; 333: 108777, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32745828

RESUMO

This study aimed to model the aflatoxin B1 (AFB1) production by A. flavus in wheat grains during malting for craft beer. A total of sixty-four different combinations of grains steeping degree (ST; 41, 43, 45 and 47%), temperature (13, 15, 17 and 19 °C) and time of germination (48, 72, 96 and 120 h), comprising the range of malting conditions that allow the production of quality malt, were assayed. AFB1 was produced in a range of 15.78 ± 3.54 µg/kg (41% ST, 13 °C for 48 h) to 284.66 ± 44.34 µg/kg (47% ST, 19 °C for 120 h). The regression model showing an acceptable fit to the experimental data (adjusted R2 0.84) for AFB1 as a function of grains steeping degree, temperature and time of germination. Results showed that AFB1 levels in wheat malt increase with increase of the temperature or time of germination. Within the range of tested malting conditions, no significant effects were observed for steeping degree on AFB1 levels in wheat malt. The generated model is useful to estimate the AFB1 levels in wheat malt. Findings highlight overall that if wheat grains are contaminated with A. flavus, AFB1 might be produced in malt in levels above the limits set by regulatory agencies, regardless the steeping conditions used.


Assuntos
Aflatoxina B1/biossíntese , Aspergillus flavus/metabolismo , Cerveja/microbiologia , Modelos Biológicos , Triticum/microbiologia , Cerveja/análise , Fermentação/fisiologia , Germinação/fisiologia , Sementes/microbiologia , Temperatura
8.
Microb Pathog ; 149: 104264, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32464302

RESUMO

This study had as aims to evaluate the effects of successive exposures to Mentha piperita L. essential oil (MPEO) on culturability and physiological functions of Salmonella Typhimurium PT4. S. Typhimurium PT4 cells (108 log CFU/mL) were exposed to the same (1.25 µL/mL) or increasing MPEO concentrations (1.25-80 µL/mL) during 252 h. At each 36-h interval, the viable cell counts, and distinct cell functions were assessed using plate counting and flow cytometry, respectively. As the exposure time to the same MPEO concentration increased, the population of S. Typhimurium PT4 cells with damaged, permeabilized and depolarized membrane, and compromised efflux activity decreased. Otherwise, S. Typhimurium PT4 cells with damaged membrane physiological functions increased over the exposure to increasing concentrations of MPEO. Genomic analyses showed that the strain carries 17 genes associated with stress responses and the persistence of the tested strain among sources associated with poultry spanning more than 16 years and its virulence for humans. Therefore, successive exposure to a sublethal concentration of MPEO induced S. Typhimurium PT4 cells capable of maintaining the membrane integrity and its functions despite their non-culturable state.


Assuntos
Epidemias , Óleos Voláteis , Humanos , Mentha piperita , Óleos Voláteis/farmacologia , Extratos Vegetais , Salmonella typhimurium/genética
9.
Food Microbiol ; 79: 48-60, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30621875

RESUMO

This study compares dynamic tertiary and competition models for L. monocytogenes growth as a function of intrinsic properties of a traditional Brazilian soft cheese and the inhibitory effect of lactic acid bacteria (LAB) during refrigerated storage. Cheeses were prepared from raw or pasteurized milk with or without the addition of selected LAB with known anti-listerial activity. Cheeses were analyzed for LAB and L. monocytogenes counts, pH and water activity (aw) throughout cold storage. Two approaches were used to describe the effect of LAB on L. monocytogenes: a Huang-Cardinal model that considers the effect of pH and aw variation in a dynamic kinetic analysis framework; and microbial competition models, including Lotka-Volterra and Jameson-effect variants, describing the simultaneous growth of L. monocytogenes and LAB. The Jameson-effect with γ and the Lotka-Volterra models produced models with statistically significant coefficients that characterized the inhibitory effect of selected LAB on L. monocytogenes in Minas fresh cheese. The Huang-Cardinal model [pH] outperformed both competition models. Taking aw change into account did not improve the fit quality of the Huang-Cardinal [pH] model. These models for Minas soft cheese should be valuable for future microbial risk assessments for this culturally important traditional cheese.


Assuntos
Queijo/microbiologia , Temperatura Baixa , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Modelos Biológicos , Animais , Antibiose , Brasil , Queijo/análise , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio , Cinética , Lactobacillales/química , Lactobacillales/crescimento & desenvolvimento , Leite/microbiologia , Água/análise
10.
J Food Prot ; 81(11): 1800-1809, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30299978

RESUMO

This study evaluated the microbiological and physicochemical characteristics in different commercial brands of a Brazilian minimally ripened (coalho) cheese during 60 days of storage under refrigeration. Combinations of maximum and minimum values of water activity and pH determined in cheese samples at refrigeration temperature (7°C) were used in a bacterial growth prediction analysis. Maximum growth rate (Grmax) was estimated for different pathogenic and/or spoilage bacteria using the ComBase Predictor. Results of microbiological characterization analyses showed persistent high counts for all monitored microbial groups ( Lactobacillus spp., Lactococcus spp., Enterococcus spp., Staphylococcus spp., Enterobacteriaceae, proteolytic and lipolytic microorganisms, and fungi) in cheese samples; no dominant microbial group was observed over time. Values of pH (6.03 ± 0.16 to 7.28 ± 0.55), acidity (0.15% ± 0.09% to 0.66% ± 0.26%), sodium chloride (1.05% ± 0.19% to 1.97% ± 0.75%), and water activity (0.948 ± 0.020 to 0.974 ± 0.012) did not vary in cheese samples during storage. Estimated Grmax values for the tested bacteria were in the range of 0.004 to 0.044 log CFU/h. Highest Grmax values (0.005 to 0.044 log CFU/h) were predicted for the psychrotrophic Aeromonas hydrophila, Listeria monocytogenes, Pseudomonas spp., and Yersinia enterocolitica. Grmax values predicted for Escherichia coli, Salmonella spp., and Staphylococcus aureus were in the range of 0.004 to 0.016 log CFU/h. These results indicate unsatisfactory microbiological characteristics of commercially available coalho cheese. Physicochemical characteristics of commercial coalho cheese stored under refrigeration allow bacterial growth to occur, indicating higher risk for fast growth of contaminant bacteria in this product.


Assuntos
Bactérias/crescimento & desenvolvimento , Queijo , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Brasil , Queijo/microbiologia , Contagem de Colônia Microbiana , Listeria monocytogenes/crescimento & desenvolvimento , Refrigeração , Staphylococcus aureus/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA