Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31622171

RESUMO

Carbonyl compounds and furan derivatives may form adducts with DNA and cause oxidative stress to human cells, which establishes the carcinogenic potential of these compounds. The occurrence of these compounds may vary according to the processing characteristics of the beer. The objective of this study was, for the first time, to investigate the free forms of target carbonyl compounds [acetaldehyde, acrolein, ethyl carbamate (EC) and formaldehyde] and furan derivatives [furfural and furfuryl alcohol (FA)] during the brewing stages of ale and lager craft beers. Samples were evaluated using headspace-solid phase microextraction and gas chromatography with mass spectrometric detection in selected ion monitoring mode (HS-SPME-GC/MS-SIM). Acetaldehyde, acrolein, formaldehyde and furfuryl alcohol were found in all brewing stages of both beer types, while EC and furfural concentrations were below the LOD and LOQ of the method (0.1 and 0.01 µg L-1, respectively). Boiling and fermentation of ale brewing seem to be important steps for the formation of acrolein and acetaldehyde, respectively, while boiling resulted in an increase of FA in both types of beer. Conversely, pasteurisation and maturation reduced the levels of these compounds in both types of beer. An increase in concentration of acrolein has not been verified in lager brew probably due to the difference in boiling time between these two types of beer (60 and 90 min for ale and lager, respectively).


Assuntos
Cerveja/análise , Análise de Alimentos , Contaminação de Alimentos/análise , Acetaldeído/efeitos adversos , Acetaldeído/análise , Acroleína/efeitos adversos , Acroleína/análise , Cerveja/efeitos adversos , Fermentação , Formaldeído/efeitos adversos , Formaldeído/análise , Furanos/efeitos adversos , Furanos/análise , Humanos , Uretana/efeitos adversos , Uretana/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-31596176

RESUMO

Compounds with toxic potential may occur in beer, such as carbonyl compounds (acetaldehyde, acrolein, ethyl carbamate [EC] and formaldehyde) and furan derivatives [furfural and furfuryl alcohol (FA)]. The objective of this study was, for the first time, to validate a method based on headspace-solid phase microextraction using a PDMS-overcoated fibre and gas chromatography with mass spectrometric detection in selected ion monitoring mode (HS-SPME-GC/MS-SIM) to investigate target carbonyl compounds and furan derivatives in beers. Analytical curves showed proper linearity with r2 ranging from 0.9731 to 0.9960 for acetaldehyde and EC, respectively. The lowest LOD was found for acetaldehyde (0.03 µg L-1), while the lowest LOQ value (1.0 µg L-1) was found for acetaldehyde and EC, formaldehyde and furfural. Recovery (90% to 105%), intermediate precision and repeatability (lower than 13%), limits of detection and quantification (values below 2.5 µg L-1) showed that the method is suitable to simultaneously quantify these compounds. EC was detected in only two samples (1 lager and 1 ale). Furfural was found in 37% and 82% of ale and lager beers, respectively. Acetaldehyde, acrolein, formaldehyde and FA were detected in all samples. However, acrolein was the only compound found in the commercial samples at a concentration capable of causing health risk. Besides furfural and FA, four other furan-containing compounds (5-methyl-2-furan methanethiol, acetylfuran, 5-methylfurfural and γ-nonalactone) were also found in beers, however, at levels low enough not to impose potential health risk.


Assuntos
Cerveja/análise , Contaminação de Alimentos/análise , Microextração em Fase Sólida , Acetaldeído/análise , Acroleína/análise , Formaldeído/análise , Furanos/análise , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Medição de Risco , Uretana/análise
3.
Food Res Int ; 123: 75-87, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285025

RESUMO

Ethanol is the major matrix constituent of beer and has been reported as an important interfering volatile during headspace solid phase microextraction (HS-SPME) of minor compounds due to its displacement effect. The addition of a thin hydrophobic polydimethylsiloxane (PDMS) layer on a commercial divinylbenzene/Carboxen/PDMS (DVB/Car/PDMS) fiber was evaluated, for the first time, to minimize the displacement effect caused by ethanol in the quantitative determination of volatile profile of five stages of brewing. Analysis were performed through gas chromatography coupled to mass spectrometry detector. The extractive capacity of the PDMS-overcoated fiber was superior to the commercial analogous fiber, since the modified version extracted a greater number of compounds (61 versus 45) and allowed to obtain 20% more of total chromatographic area than the commercial fiber. The ethanol content of model solutions (0, 4, 8 and 12%) did not result in significant differences in responses neither to polar nor to medium polar or nonpolar analytes when PDMS-overcoated fiber was used. On the other hand, a displacement effect was observed when polar compounds were extracted by the commercial fiber. There was no need to prepare different analytical curves with distinct ethanol levels close to those found in each brewing stage, when PDMS-overcoated fiber was used. This approach turns the analytical method simpler, less laborious and time consuming. It showed adequate linearity, sensitivity, repeatability and intermediate precision. A heat map displayed the quantitative differences in the volatile profile of each stage of brewing. Mashing stood out in relation to the others steps by the highest levels of higher alcohols. Boiling was characterized by the highest levels of Maillard reaction products, while fermentation, maturation and pasteurization were discriminated by a major presence of esters. Terpenes were incorporated to the wort during boiling or fermentation and the concentration of these compounds remained similar throughout the subsequent brewing steps.


Assuntos
Manipulação de Alimentos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Dimetilpolisiloxanos/química , Ésteres/análise , Estudos de Avaliação como Assunto , Cromatografia Gasosa-Espectrometria de Massas , Polivinil/química , Terpenos/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-30427283

RESUMO

The objective of this research was to estimate for the first time the transformations that the free form of some target carbonyl compounds may undergo during winemaking and assess the exposure risk to these compounds through the consumption of the Merlot commercial wines under study. Acrolein and furfural were found in grapes and the respective wines, although levels were observed to decline throughout the winemaking process. Formaldehyde was found in all stages of wine production in levels lower than the limit of quantification of the method and ethyl carbamate was not found in samples. Acetaldehyde seems to be a precursor of acetoin and 2,3-butanediol, since the levels of this aldehyde decreased along winemaking and the formation of the ester and alcohol was verified. Furfural levels decreased, while the occurrence of furan-containing compounds increased during winemaking. The formation of acetaldehyde during alcoholic fermentation and the potential environmental contamination of grapes with acrolein and furfural are considered as the critical points related to the presence of toxic carbonyl compounds in the wine. Acrolein was found in the samples under study in sufficient quantities to present risk to human health, while other potentially toxic carbonyl compounds did not result in risk. This study indicated for the first time the presence of acrolein in grapes suggesting that environmental pollution can play an important role in the levels of this aldehyde detected in wines. Reduction of the emission of this aldehyde to the environment may be achieved by replacing wood burning by another heat source in fireplaces or wood stones, and abandoning the practice of burning garbage and vegetation.


Assuntos
Acetaldeído/administração & dosagem , Acetaldeído/análise , Acroleína/administração & dosagem , Acroleína/análise , Ingestão de Líquidos , Furaldeído/administração & dosagem , Furaldeído/análise , Vinho/análise , Fermentação , Humanos , Medição de Risco , Vitis/química
5.
Front Plant Sci ; 9: 1521, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459785

RESUMO

Thysanoptera-induced galls commonly culminate in simple folding or rolling leaf gall morphotypes. Most of these galls are induced by members of the suborder Tubulifera, with only a few species of the suborder Terebrantia being reported as gall inducers. The Terebrantia, as most of the gall inducers, manipulates the host plant cellular communication system, and induces anatomical and biochemical changes in its host plant. In an effort to keep its homeostasis, the host plant reacts to the stimuli of the galling insect and triggers chemical signaling processes. In contrast to free-living herbivores, the signaling processes involving galling herbivores and their host plants are practically unknown. Current investigation was performed into two steps: first, we set the structural profile of non-galled and galled leaves, and looked forward to find potential alterations due to gall induction by an undescribed species of Nexothrips (suborder Terebrantia) on Myrcia splendens. Once oil glands had been altered in size and number, the second step was the investigation of the chemical profile of three tissue samples: (1) non-galled leaves of a control individual, (2) non-galled leaves of galled plants, and (3) galls. This third sample was divided into two groups: (3.1) galls from which the inducing thrips were manually removed and (3.2) galls macerated with the inducing thrips inside. The chemical profile was performed by gas chromatography/ mass spectrometric detector after headspace solid-phase extraction. The galling activity of the Nexothrips sp. on M. splendens culminates in mesophyll compactness interspersed to diminutive hypersensitive spots, development of air cavities, and the increase in size and number of the secretory glands. Seventy-two compounds were completely identified in the volatile profile of the three samples, from which, sesquiterpenes and aldehydes, pertaining to the "green leaf volatile" (GLVs) class, are the most abundant. The rare event of gall induction by a Terebrantia revealed discrete alterations toward leaf rolling, and indicated quantitative differences related to the plant bioactivity manipulated by the galling thrips. Also, the content of methyl salicylate has varied and has been considered a potential biomarker of plant resistance stimulated as a long-distance effect on M. splendens individuals.

6.
Talanta ; 175: 9-20, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842040

RESUMO

A headspace solid phase microextraction (HS-SPME) method combined with gas chromatography-mass spectrometry (GC/MS) was developed and optimized for extraction and analysis of volatile organic compounds (VOC) of leaves and galls of Myrcia splendens. Through a process of optimization of main factors affecting HS-SPME efficiency, the coating divivnilbenzene-carboxen-polydimethylsiloxane (DVB/Car/PDMS) was chosen as the optimum extraction phase, not only in terms of extraction efficiency, but also for its broader analyte coverage. Optimum extraction temperature was 30°C, while an extraction time of 15min provided the best compromise between extraction efficiencies of lower and higher molecular weight compounds. The optimized protocol was demonstrated to be capable of sampling plant material with high reproducibility, considering that most classes of analytes met the 20% RSD FDA criterion. The optimized method was employed for the analysis of three classes of M. splendens samples, generating a final list of 65 tentatively identified VOC, including alcohols, aldehydes, esters, ketones, phenol derivatives, as well as mono and sesquiterpenes. Significant differences were evident amongst the volatile profiles obtained from non-galled leaves (NGL) and leaf-folding galls (LFG) of M. splendens. Several differences pertaining to amounts of alcohols and aldehydes were detected between samples, particularly regarding quantities of green leaf volatiles (GLV). Alcohols represented about 14% of compounds detected in gall samples, whereas in non-galled samples, alcohol content was below 5%. Phenolic derived compounds were virtually absent in reference samples, while in non-galled leaves and galls their content ranged around 0.2% and 0.4%, respectively. Likewise, methyl salicylate, a well-known signal of plant distress, amounted for 1.2% of the sample content of galls, whereas it was only present in trace levels in reference samples. Chemometric analysis based on Heatmap associated with Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) provided a suitable tool to differentiate VOC profiles in vegetal material, and could open new perspectives and opportunities in agricultural and ecological studies for the detection and identification of herbivore-induced plant VOC emissions.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Myrtaceae/química , Folhas de Planta/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Aldeídos , Desenho de Equipamento , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cetonas/análise , Fenóis/análise , Microextração em Fase Sólida/instrumentação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA