Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 124, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160593

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-low breast cancer has emerged as a new subtype of tumor, for which novel antibody-drug conjugates have shown beneficial effects. Assessment of HER2 requires several immunohistochemistry tests with an additional in situ hybridization test if a case is classified as HER2 2+. Therefore, novel cost-effective methods to speed up the HER2 assessment are highly desirable. METHODS: We used a self-supervised attention-based weakly supervised method to predict HER2-low directly from 1437 histopathological images from 1351 breast cancer patients. We built six distinct models to explore the ability of classifiers to distinguish between the HER2-negative, HER2-low, and HER2-high classes in different scenarios. The attention-based model was used to comprehend the decision-making process aimed at relevant tissue regions. RESULTS: Our results indicate that the effectiveness of classification models hinges on the consistency and dependability of assay-based tests for HER2, as the outcomes from these tests are utilized as the baseline truth for training our models. Through the use of explainable AI, we reveal histologic patterns associated with the HER2 subtypes. CONCLUSION: Our findings offer a demonstration of how deep learning technologies can be applied to identify HER2 subgroup statuses, potentially enriching the toolkit available for clinical decision-making in oncology.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Aprendizado Profundo , Imuno-Histoquímica , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica/métodos , Aprendizado de Máquina Supervisionado
2.
BMC Bioinformatics ; 24(1): 439, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990302

RESUMO

BACKGROUND: Cancer is a collection of diseases caused by the deregulation of cell processes, which is triggered by somatic mutations. The search for patterns in somatic mutations, known as mutational signatures, is a growing field of study that has already become a useful tool in oncology. Several algorithms have been proposed to perform one or both the following two tasks: (1) de novo estimation of signatures and their exposures, (2) estimation of the exposures of each one of a set of pre-defined signatures. RESULTS: Our group developed signeR, a Bayesian approach to both of these tasks. Here we present a new version of the software, signeR 2.0, which extends the possibilities of previous analyses to explore the relation of signature exposures to other data of clinical relevance. signeR 2.0 includes a user-friendly interface developed using the R-Shiny framework and improvements in performance. This version allows the analysis of submitted data or public TCGA data, which is embedded in the package for easy access. CONCLUSION: signeR 2.0 is a valuable tool to generate and explore exposure data, both from de novo or fitting analyses and is an open-source R package available through the Bioconductor project at ( https://doi.org/10.18129/B9.bioc.signeR ).


Assuntos
Neoplasias , Humanos , Teorema de Bayes , Neoplasias/genética , Mutação , Software , Algoritmos
3.
Bioinformatics ; 38(7): 1809-1815, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35104309

RESUMO

MOTIVATION: Despite of the fast development of highly effective vaccines to control the current COVID-19 pandemics, the unequal distribution and availability of these vaccines worldwide and the number of people infected in the world lead to the continuous emergence of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) variants of concern. Therefore, it is likely that real-time genomic surveillance will be continuously needed as an unceasing monitoring tool, necessary to follow the spread of the disease and the evolution of the virus. In this context, new genomic variants of SARS-CoV-2, including variants refractory to current vaccines, makes genomic surveillance programs tools of utmost importance. Nevertheless, the lack of appropriate analytical tools to quickly and effectively access the viral composition in meta-transcriptomic sequencing data, including environmental surveillance, represent possible challenges that may impact the fast adoption of this approach to mitigate the spread and transmission of viruses. RESULTS: We propose a statistical model for the estimation of the relative frequencies of SARS-CoV-2 variants in pooled samples. This model is built by considering a previously defined selection of genomic polymorphisms that characterize SARS-CoV-2 variants. The methods described here support both raw sequencing reads for polymorphisms-based markers calling and predefined markers in the variant call format. Results obtained using simulated data show that our method is quite effective in recovering the correct variant proportions. Further, results obtained by considering longitudinal data from wastewater samples of two locations in Switzerland agree well with those describing the epidemiological evolution of COVID-19 variants in clinical samples of these locations. Our results show that the described method can be a valuable tool for tracking the proportions of SARS-CoV-2 variants in complex mixtures such as waste water and environmental samples. AVAILABILITY AND IMPLEMENTATION: http://github.com/rvalieris/LCS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Perfilação da Expressão Gênica , Genômica
4.
PLoS One ; 17(1): e0262419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085295

RESUMO

Genetic predisposition accounts for nearly 10% of all melanoma cases and has been associated with a dozen moderate- to high-penetrance genes, including CDKN2A, CDK4, POT1 and BAP1. However, in most melanoma-prone families, the genetic etiology of cancer predisposition remains undetermined. The goal of this study was to identify rare genomic variants associated with cutaneous melanoma susceptibility in melanoma-prone families. Whole-exome sequencing was performed in 2 affected individuals of 5 melanoma-prone families negative for mutations in CDKN2A and CDK4, the major cutaneous melanoma risk genes. A total of 288 rare coding variants shared by the affected relatives of each family were identified, including 7 loss-of-function variants. By performing in silico analyses of gene function, biological pathways, and variant pathogenicity prediction, we underscored the putative role of several genes for melanoma risk, including previously described genes such as MYO7A and WRN, as well as new putative candidates, such as SERPINB4, HRNR, and NOP10. In conclusion, our data revealed rare germline variants in melanoma-prone families contributing with a novel set of potential candidate genes to be further investigated in future studies.


Assuntos
Predisposição Genética para Doença/genética , Melanoma/genética , Mutação/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Brasil , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Sequenciamento do Exoma/métodos , Melanoma Maligno Cutâneo
5.
Cancers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513945

RESUMO

DNA mismatch repair deficiency (dMMR) is associated with the microsatellite instability (MSI) phenotype and leads to increased mutation load, which in turn may impact anti-tumor immune responses and treatment effectiveness. Various mutational signatures directly linked to dMMR have been described for primary cancers. To investigate which mutational signatures are associated with prognosis in gastric cancer, we performed a de novo extraction of mutational signatures in a cohort of 787 patients. We detected three dMMR-related signatures, one of which clearly discriminates tumors with MLH1 gene silencing caused by promoter hypermethylation (area under the curve = 98%). We then demonstrated that samples with the highest exposure of this signature share features related to better prognosis, encompassing clinical and molecular aspects and altered immune infiltrate composition. Overall, the assessment of the prognostic value and of the impact of modifications in MMR-related genes on shaping specific dMMR mutational signatures provides evidence that classification based on mutational signature exposure enables prognosis stratification.

6.
Cancers (Basel) ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316873

RESUMO

DNA repair deficiency (DRD) is an important driver of carcinogenesis and an efficient target for anti-tumor therapies to improve patient survival. Thus, detection of DRD in tumors is paramount. Currently, determination of DRD in tumors is dependent on wet-lab assays. Here we describe an efficient machine learning algorithm which can predict DRD from histopathological images. The utility of this algorithm is demonstrated with data obtained from 1445 cancer patients. Our method performs rather well when trained on breast cancer specimens with homologous recombination deficiency (HRD), AUC (area under curve) = 0.80. Results for an independent breast cancer cohort achieved an AUC = 0.70. The utility of our method was further shown by considering the detection of mismatch repair deficiency (MMRD) in gastric cancer, yielding an AUC = 0.81. Our results demonstrate the capacity of our learning-base system as a low-cost tool for DRD detection.

7.
Genet Mol Biol ; 43(2): e20180351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32352476

RESUMO

Next-generation sequencing (NGS) platforms allow the analysis of hundreds of millions of molecules in a single sequencing run, revolutionizing many research areas. NGS-based microRNA studies enable expression quantification in unprecedented scale without the limitations of closed-platforms. Yet, whereas a massive amount of data produced by these platforms is available, comparisons of quantification/discovery capabilities between platforms are still lacking. Here we compare two NGS-platforms: SOLiD and PGM, by evaluating their microRNA identification/quantification capabilities using two breast-derived cell-lines. A high expression correlation (R2 > 0.9) was achieved, encompassing 97% of the miRNAs, and the few discrepancies in miRNA counts were attributable to molecules that have very low expression. Quantification divergences indicative of artefactual representation were seen for 14 miRNAs (higher in SOLiD-reads) and another 10 miRNAs more abundant in PGM-data. An inspection of these revealed an increased and statistically significant count of uracyls and uracyl-stretches for PGM-enriched miRNAs, compared to SOLiD and to the miRBase. In parallel, adenines and adenine-stretches were enriched for SOLiDderived miRNA reads. We conclude that, whereas both platforms are overall consistent and can be used interchangeably for microRNA expression studies, particular sequence features appear to be indicative of specific platform bias, and their presence in microRNAs should be considered for database-analyses.

8.
Front Oncol ; 10: 556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432034

RESUMO

Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.

9.
Int J Cancer ; 146(1): 181-191, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31090066

RESUMO

Mechanisms of viral oncogenesis are diverse and include the off-target activity of enzymes expressed by the infected cells, which evolved to target viral genomes for controlling their infection. Among these enzymes, the single-strand DNA editing capability of APOBECs represent a well-conserved viral infection response that can also cause untoward mutations in the host DNA. Here we show, after evaluating somatic single-nucleotide variations and transcriptome data in 240 gastric cancer samples, a positive correlation between APOBEC3s mRNA-expression and the APOBEC-mutation signature, both increased in EBV+ tumors. The correlation was reinforced by the observation of APOBEC mutations preferentially occurring in the genomic loci of the most active transcripts. This EBV infection and APOBEC3 mutation-signature axis were confirmed in a validation cohort of 112 gastric cancer patients. Our findings suggest that APOBEC3 upregulation in EBV+ cancer may boost the mutation load, providing further clues to the mechanisms of EBV-induced gastric carcinogenesis. After further validation, this EBV-APOBEC axis may prove to be a secondary driving force in the mutational evolution of EBV+ gastric tumors, whose consequences in terms of prognosis and treatment implications should be vetted.


Assuntos
Citidina Desaminase/genética , DNA de Neoplasias/genética , Herpesvirus Humano 4/patogenicidade , Neoplasias Gástricas/virologia , Desaminases APOBEC , Carcinogênese , Genes Virais , Herpesvirus Humano 4/genética , Humanos , Mutação , Neoplasias Gástricas/patologia
10.
Pharmacogenomics ; 20(7): 493-502, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31124410

RESUMO

HER2 upregulation is related with poor outcome in many tumor types. Whereas anti-HER2 treatment is the standard approach as adjuvant therapy in HER2-overexpressing breast cancer, the frequent relapses reinforce the need for alternative treatments. Here we used next-generation sequencing (NGS) to evaluate miRNAs and circRNAs in the cell-lines HB4a and C5.2, where the latter is a HER2-overexpressing clone of the former, and also from two different populations of their secreted extracellular vesicles. Whereas circRNA-levels were stable, we found at least 16 miRNAs apparently modulated by HER2-expression. The miR223-3p, miR-421 and miR-21-5p were validated in an independent cohort of 431 breast cancer patients from The Cancer Genome Atlas (TCGA). The consistent modulation of these molecules and their possible involvement in the HER2-axis makes them promising new targets to overcome HER2-activation.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , RNA Circular/genética , Receptor ErbB-2/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA