Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Biophotonics ; : e202400066, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048930

RESUMO

The aim of this study was to verify the effectiveness of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy in the characterization of bone repair in mandibular osteotomy using erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser and multilaminate drill on each side. Two mandible bone fragments were removed from 30 rabbits, and the process of bone repair was studied immediately, 3, 7, 15, 21, and 28 days after the surgery. The histological analysis allowed detecting differences in the early stages of tissue repair after bone cutting performed with the Er,Cr:YSGG laser or multilaminate drill. The ATR-FTIR spectroscopy technique was sensitive to changes in the organic content of bone tissue repair process.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124220, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38560952

RESUMO

In this study, we comprehensively investigated the degradation of industrial trinitrotoluene (TNT), focusing on the effects of aging and direct contact with steel surfaces, mirroring real-world usage conditions. While practical knowledge exists regarding this degradation, the existing literature lacks in-depth insights into the underlying processes. To address this gap, we conducted experiments using small steel samples, representative of military ammunition casings, which were coated with TNT and subjected to 30 days of heating at 75 °C under vacuum conditions. A subset of these samples was coated with a protective red alkyd paint. After the aging process, the TNT was carefully removed from the metal surfaces and subjected to a comprehensive analysis encompassing scanning electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography-mass spectrometry. Our results reveal a remarkable preservation of the chemical integrity of industrial TNT, even in the presence of thermal stress and direct steel contact. Although superficial changes were observed in the TNT's appearance, all analytical data consistently demonstrated the maintenance of its chemical composition. Notably, the sole change in composition was attributed to the presence of degradation products associated with the alkyd paint coating, rather than intrinsic TNT degradation. These findings underscore the negligible impact of degradation processes on TNT in scenarios involving the solid-phase thermal stress of TNT in direct contact with metal, significantly enhancing our understanding of TNT safety when packaged within steel artifacts-a common context in military ammunition.

3.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338857

RESUMO

Galleria mellonella is a lepidopteran whose larval stage has shown the ability to degrade polystyrene (PS), one of the most recalcitrant plastics to biodegradation. In the present study, we fed G. mellonella larvae with PS for 54 days and determined candidate enzymes for its degradation. We first confirmed the biodegradation of PS by Fourier transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) and then identified candidate enzymes in the larval gut by proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Two of these proteins have structural similarities to the styrene-degrading enzymes described so far. In addition, potential hydrolases, isomerases, dehydrogenases, and oxidases were identified that show little similarity to the bacterial enzymes that degrade styrene. However, their response to a diet based solely on polystyrene makes them interesting candidates as a potential new group of polystyrene-metabolizing enzymes in eukaryotes.


Assuntos
Mariposas , Poliestirenos , Animais , Poliestirenos/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Mariposas/microbiologia , Larva/metabolismo , Biodegradação Ambiental
4.
Biosensors (Basel) ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248411

RESUMO

Pap smear screening is a widespread technique used to detect premalignant lesions of cervical cancer (CC); however, it lacks sensitivity, leading to identifying biomarkers that improve early diagnosis sensitivity. A characteristic of cancer is the aberrant sialylation that involves the abnormal expression of α2,6 sialic acid, a specific carbohydrate linked to glycoproteins and glycolipids on the cell surface, which has been reported in premalignant CC lesions. This work aimed to develop a method to differentiate CC cell lines and primary fibroblasts using a novel lectin-based biosensor to detect α2,6 sialic acid based on attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and chemometric. The biosensor was developed by conjugating gold nanoparticles (AuNPs) with 5 µg of Sambucus nigra (SNA) lectin as the biorecognition element. Sialic acid detection was associated with the signal amplification in the 1500-1350 cm-1 region observed by the surface-enhanced infrared absorption spectroscopy (SEIRA) effect from ATR-FTIR results. This region was further analyzed for the clustering of samples by applying principal component analysis (PCA) and confidence ellipses at a 95% interval. This work demonstrates the feasibility of employing SNA biosensors to discriminate between tumoral and non-tumoral cells, that have the potential for the early detection of premalignant lesions of CC.


Assuntos
Nanopartículas Metálicas , Lectinas de Plantas , Proteínas Inativadoras de Ribossomos , Sambucus nigra , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Lectinas , Ácido N-Acetilneuramínico , Ouro , Linhagem Celular
5.
Talanta ; 269: 125482, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042146

RESUMO

Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is an emerging technology in the medical field. Blood D-dimer was initially studied as a marker of the activation of coagulation and fibrinolysis. It is mainly used as a potential diagnosis screening test for pulmonary embolism or deep vein thrombosis but was recently associated with COVID-19 severity. This study aimed to evaluate the use of ATR-FTIR spectroscopy with machine learning to classify plasma D-dimer concentrations. The plasma ATR-FTIR spectra from 100 patients were studied through principal component analysis (PCA) and two supervised approaches: genetic algorithm with linear discriminant analysis (GA-LDA) and partial least squares with linear discriminant (PLS-DA). The spectra were truncated to the fingerprint region (1800-1000 cm-1). The GA-LDA method effectively classified patients according to D-dimer cutoff (≤0.5 µg/mL and >0.5 µg/mL) with 87.5 % specificity and 100 % sensitivity on the training set, and 85.7 % specificity, and 95.6 % sensitivity on the test set. Thus, we demonstrate that ATR-FTIR spectroscopy might be an important additional tool for classifying patients according to D-dimer values. ATR-FTIR spectral analyses associated with clinical evidence can contribute to a faster and more accurate medical diagnosis, reduce patient morbidity, and save resources and demand for professionals.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Análise Discriminante , Análise de Componente Principal , Proteínas Mutadas de Ataxia Telangiectasia
6.
Polymers (Basel) ; 15(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139971

RESUMO

In the present work, electrospun membranes of polyvinylpyrrolidone (PVP) nanofibers were manufactured using extracts and phenolic fractions of Dysphania ambrosioides (epazote), Opuntia ficus-indica (nopal), and Tradescantia pallida (chicken grass). The characterization of the membranes was carried out by scanning electron microscopy and Fourier transform infrared spectroscopy. The membranes synthesized through the use of the extracts generally showed a slight decrease in the diameter of the fibers but an increase in the size of the pores due to the presence of nanoparticles (rosaries) on the surface of the fibers, while the membranes synthesized using the phenolic fraction demonstrated an inversely proportional relationship between the compounds of this family with the diameter of the fibers and the size of the pore, allowing to elucidate part of the polymerization mechanisms of PVP nanofibers, in addition to proposing a reaction mechanism in the interaction between PVP and phenolic compounds for surface functionalization. Likewise, we demonstrate that the generation of reaction seeds through functionalization allows the addition of other compounds to the fibers in the membranes synthesized using the complete extract.

7.
Foods ; 12(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37372612

RESUMO

The growing interest in plant-based food protein sources has provided opportunities for the valorization of agri-food by-products, driving the food industry towards more sustainable development. In this study, three extraction procedures (varying the pH value (7.0 and 11.0) and the addition of salt (0 and 5%)) were investigated to obtain seven different protein fractions (SIPF) from Sacha Inchi oil press-cake (SIPC), which were characterized in terms of their protein content, electrophoretic profile, secondary structure, and techno-functional properties. Extractions at pH 11.0 without salt addition produced the highest values of protein content, extraction yield, protein recovery, and protein concentration increase (84.0%, 24.7%, 36.5%, and 1.5-fold, respectively). Under these extraction conditions, the electrophoretic analysis indicated that most of the SIPC proteins were extracted. SIPF displayed an excellent oil absorption capacity (4.3-9.0 w/w), and interesting foam activity (36.4-133.3%). The solubility and emulsifying activity of the albumin fractions were significantly higher than those of the other fractions (~87 vs. <15.8%, and 280-370 vs. <140 m2/g, respectively). Correlation analysis showed that the secondary structure of the SIPF significantly influences their techno-functional properties. These results indicate that SIPC is a by-product of great potential for protein extraction processes, and as a valorization strategy for technical cycle solutions for the Sacha Inchi productive chain in the circular economy context.

8.
Diagnostics (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189497

RESUMO

The blood diagnosis of diabetes mellitus (DM) is highly accurate; however, it is an invasive, high-cost, and painful procedure. In this context, the combination of ATR-FTIR spectroscopy and machine learning techniques in other biological samples has been used as an alternative tool to develop a non-invasive, fast, inexpensive, and label-free diagnostic or screening platform for several diseases, including DM. In this study, we used the ATR-FTIR tool associated with linear discriminant analysis (LDA) and a support vector machine (SVM) classifier in order to identify changes in salivary components to be used as alternative biomarkers for the diagnosis of type 2 DM. The band area values of 2962 cm-1, 1641 cm-1, and 1073 cm-1 were higher in type 2 diabetic patients than in non-diabetic subjects. The best classification of salivary infrared spectra was by SVM, showing a sensitivity of 93.3% (42/45), specificity of 74% (17/23), and accuracy of 87% between non-diabetic subjects and uncontrolled type 2 DM patients. The SHAP features of infrared spectra indicate the main salivary vibrational modes of lipids and proteins that are responsible for discriminating DM patients. In summary, these data highlight the potential of ATR-FTIR platforms coupled with machine learning as a reagent-free, non-invasive, and highly sensitive tool for screening and monitoring diabetic patients.

9.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37189545

RESUMO

Zika virus (ZIKV) diagnosis is currently performed through an invasive, painful, and costly procedure using molecular biology. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for ZIKV diagnosis is of great relevance. It is critical to prepare a global strategy for the next ZIKV outbreak given its devastating consequences, particularly in pregnant women. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to discriminate systemic diseases using saliva; however, the salivary diagnostic application in viral diseases is unknown. To test this hypothesis, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with ZIKV (50 µL,105 FFU, n = 7) or vehicle (50 µL, n = 8). Saliva samples were collected on day three (due to the peak of viremia) and the spleen was also harvested. Changes in the salivary spectral profile were analyzed by Student's t test (p < 0.05), multivariate analysis, and the diagnostic capacity by ROC curve. ZIKV infection was confirmed by real-time PCR of the spleen sample. The infrared spectroscopy coupled with univariate analysis suggested the vibrational mode at 1547 cm-1 as a potential candidate to discriminate ZIKV and control salivary samples. Three PCs explained 93.2% of the cumulative variance in PCA analysis and the spectrochemical analysis with LDA achieved an accuracy of 93.3%, with a specificity of 87.5% and sensitivity of 100%. The LDA-SVM analysis showed 100% discrimination between both classes. Our results suggest that ATR-FTIR applied to saliva might have high accuracy in ZIKV diagnosis with potential as a non-invasive and cost-effective diagnostic tool.

10.
Int J Biol Macromol ; 242(Pt 2): 124898, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207748

RESUMO

Recently, the development of materials with antimicrobial properties has become a challenge under scrutiny. The incorporation of copper nanoparticles (NpCu) into a chitosan matrix appears to represent a viable strategy to contain the particles and prevent their oxidation. Regarding the physical properties, the nanocomposite films (CHCu) showed a decrease in the elongation at break (5 %) and an increase in the tensile strength of 10 % concerning chitosan films (control). They also showed solubility values lower than 5 % while the swelling diminished by 50 %, on average. The dynamical mechanical analysis (DMA) of nanocomposites revealed two thermal events located at 113° and 178 °C, which matched the glass transitions of the CH-enriched phase and nanoparticles-enriched phase, respectively. In addition, the thermogravimetric analysis (TGA) detected a greater stability of the nanocomposites. Chitosan films and the NpCu-loaded nanocomposites demonstrated excellent antibacterial capacity against Gram-negative and Gram-positive bacteria, proved through diffusion disc, zeta potential, and ATR-FTIR techniques. Additionally, the penetration of individual NpCu particles into bacterial cells and the leakage of cell content were verified by TEM. The mechanism of the antibacterial activity of the nanocomposites involved the interaction of chitosan with the bacterial outer membrane or cell wall and the diffusion of the NpCu through the cells. These materials could be applied in diverse fields of biology, medicine, or food packaging.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Quitosana/química , Cobre/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Resistência à Tração , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA