Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Foods ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338565

RESUMO

This research analyzed, optimized and modeled the inactivation kinetics of pathogenic bacteria (PB1: Escherichia coli O157:H7 and PB2: Listeria monocytogenes) and determined the microbiological safety of tomato juice processed by UV-LED irradiation and heat treatment. UV-LED processing conditions were optimized using response surface methodology (RSM) and were 90% power intensity, 21 min and 273-275 nm (251 mJ/cm2) with R2 > 0.96. Using the optimal conditions, levels of PB1 and PB2 resulted a log reduction of 2.89 and 2.74 CFU/mL, respectively. The Weibull model was efficient for estimating the log inactivation of PB1 and PB2 (CFU/mL). The kinetic parameter δ showed that 465.2 mJ/cm2 is needed to achieve a 90% log (CFU/mL) reduction in PB1 and 511.3 mJ/cm2 for PB2. With respect to the scale parameter p > 1, there is a descending concave curve. UV-LED-treated tomato juice had an 11.4% lower Listeria monocytogenes count than heat-treated juice on day 28 (4.0 ± 0.82 °C). Therefore, UV-LED technology could be used to inactivate Escherichia coli O157:H7 and Listeria monocytogenes, preserving tomato juice for microbiological safety, but studies are required to further improve the inactivation of these pathogens and analyze other fruit and vegetable juices.

2.
J Med Microbiol ; 72(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37130048

RESUMO

Introduction. The different pathotypes of Escherichia coli can produce a large number of human diseases. Surveillance is complex since their differentiation is not easy. In particular, the detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 consists of stool culture of a diarrhoeal sample on enriched and/or selective media and identification of presumptive colonies and confirmation, which require a certain level of training and are time-consuming and expensive.Hypothesis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a quick and easy way to obtain the protein spectrum of a microorganism, identify the genus and species, and detect potential biomarker peaks of certain characteristics.Aim. To verify the usefulness of MALDI-TOF MS to rapidly identify and differentiate STEC O157 : H7 from other E. coli pathotypes.Methodology. The direct method was employed, and the information obtained using Microflex LT platform-based analysis from 60 clinical isolates (training set) was used to detect differences between the peptide fingerprints of STEC O157 : H7 and other E. coli strains. The protein profiles detected laid the foundations for the development and evaluation of machine learning predictive models in this study.Results. The detection of potential biomarkers in combination with machine learning predictive models in a new set of 142 samples, called 'test set', achieved 99.3 % (141/142) correct classification, allowing us to distinguish between the isolates of STEC O157 : H7 and the other E. coli group. Great similarity was also observed with respect to this last group and the Shigella species when applying the potential biomarkers algorithm, allowing differentiation from STEC O157 : H7Conclusion. Given that STEC O157 : H7 is the main causal agent of haemolytic uremic syndrome, and based on the performance values obtained in the present study (sensitivity=98.5 % and specificity=100.0 %), the implementation of this technique provides a proof of principle for MALDI-TOF MS and machine learning to identify biomarkers to rapidly screen or confirm STEC O157 : H7 versus other diarrhoeagenic E. coli in the future.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli O157/metabolismo , Sorogrupo , Infecções por Escherichia coli/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Biomarcadores/metabolismo
3.
Res Vet Sci ; 155: 76-87, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652843

RESUMO

Lactic acid bacteria (LAB) selected on the basis of probiotic characteristics were administered to beef feedlot catlle and the effect on body condition/growth and nutritional-metabolic status as well as on E. coli O157:H7 fecal shedding, were investigated. A feeding trials involving 126 steers were used to evaluate the effects of Lactobacillus acidophilus CRL2074, Limosilactobacillus fermentum CRL2085 and Limosilactobacillus mucosae CRL2069 and their combinations (5 different probiotic groups and control) when 107-108 CFU/animal of each probiotic group were in-feed supplemented. Cattle were fed a high energy corn-based diet (16 to 88%) and samples from each animal were taken at 0, 40, 104 and 163 days. In general, animals body condition and sensorium state showed optimal muscle-skeletal development and behavioral adaption to confinement; no nasal/eye discharges and diarrheic feces were observed. The nutritional performance of the steers revealed a steady increase of biometric parameters and weight. Animals supplied with L. mucosae CRL2069 for 104 days reached the maximum mean live weight (343.2 kg), whereas the greatest weight daily gain (1.27 ± 0.16 Kg/day) was obtained when CRL2069 and its combination with L. fermentum CRL2085 (1.26 ± 0.11 kg/day) were administered during the complete fattening cycle. With several exceptions, bovine cattle blood and serum parameters showed values within referential ranges. As a preharvest strategy to reduce Escherichia coli O157:H7 in cattle feces, CRL2085 administered during 40 days decreased pathogen shedding with a reduction of 43% during the feeding period. L. fermentum CRL2085 and L. mucosae CRL2069 show promise for feedlot cattle feeding supplementation to improve metabolic-nutritional status, overall productive performance and to reduce E. coli O157:H7 shedding, thus decreasing contamination chances of meat food products.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Probióticos , Bovinos , Animais , Escherichia coli , Ração Animal/análise , Probióticos/farmacologia , Suplementos Nutricionais , Fezes/microbiologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana/veterinária , Infecções por Escherichia coli/veterinária
4.
Lett Appl Microbiol ; 73(2): 247-256, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008189

RESUMO

Lactic acid bacteria (LAB) exert antagonistic activities against diverse microorganisms, including pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce biofilms and to inhibit growth and surface colonization of Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the 37 strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, Lact. plantarum CRL 1075 not only inhibited EHEC but also was able to grow in the presence of the enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies oriented to its application in food-processing environments to mitigate undesirable surface contaminations of E. coli.


Assuntos
Antibiose , Biofilmes/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Lactobacillales/fisiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Interações Microbianas , Probióticos
5.
Rev. colomb. quím. (Bogotá) ; 50(1): 3-12, ene.-abr. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1289320

RESUMO

Resumen Escherichia coli 0157:H7 es una bacteria patógena reconocida por su capacidad de resistencia a diversos antibióticos; razón por la cual, se generan complicaciones en el tratamiento de infecciones producidas por esta bacteria. El péptido Ib-M1 y el bioconjugado I0NP@Ib-M1 han surgido como una nueva alternativa antimicrobiana contra E. coli 0157:H7. El mecanismo de acción de Ib-Mi e I0NP@Ib-M1 contra esta bacteria aún es desconocido; por lo tanto, el objetivo de esta investigación fue identificar el cambio en el perfil de proteínas de E. coli 0157:H7 luego del tratamiento con Ib-M1 e I0NP@ Ib-M1 como primer paso para determinar su mecanismo de acción. Para esto, se llevó a cabo la obtención de proteínas, posteriormente se realizó una electroforesis bidimensional para finalmente realizar la determinación de la variabilidad de los perfiles proteicos. Una vez obtenidos estos perfiles, se llevó a cabo un análisis de varianza (AN0VA). Se identificaron 72 proteínas expresadas diferencialmente, las cuales pueden relacionarse con el efecto sobre el crecimiento de la bacteria en presencia de Ib-M1 e I0NP@Ib-M. Estas proteínas se encuentran involucradas en procesos de transferencia de grupos acilo (proteína Yhbs), translocación de lipoproteínas (proteína LolA) y transporte de aminoácidos (proteína GpmA), entre otros.


Abstract Escherichia coli 0157: H7 is a pathogenic bacterium which is recognized for the ability to resist multiple antibiotics; accordingly, complications occur in the treatment of infections caused by this bacterium. The Ib-M1 peptide and the I0NP @ Ib-M1 bioconjugate have emerged as a new antimicrobial alternatives against E. coli 0157: H7. The mechanism of action of Ib-M1 and I0NP @ Ib-M1 against this bacterium is still unknown; therefore, the goal of this research was to identify the change in the proteins profile of E. coli 0157: H7 after treatment with Ib-M1 and I0NP @ Ib-M1 as a first step to determine its mechanism of action. For this, the proteins were obtained first, and then a two-dimensional electrophoresis was performed to finally determine the variability of the protein profiles. 0nce the protein profiles were obtained, an analysis of variance (AN0VA) was carried out. 72 differentially expressed proteins were identified, which can be connected to the effect on the bacterium's growth in the presence of Ib-M1 and I0NP @ Ib-M. These proteins are involved in acyl groups transfer processes (Yhbs protein), lipoprotein translocation (LolA protein) and amino acid transport (GpmA protein), among others.


Resumo Escherichia coli O157: H7 é uma bactéria patogênica reconhecida por sua capacidade de resistir a vários antibióticos; razão pela qual, complicações são geradas no tratamento de infecções produzidas por essa bactéria. O peptídeo Ib-M1 livre e imobilizado em nanopartículas magnéticas de óxido de ferro (IONP @ Ib-M1) surgiu como uma nova alternativa antimicrobiana contra E. coli O157: H7 e isolados clínicos desta bactéria. O mecanismo de ação de Ib-M1 e IONP @ Ib-M1 contra E. coli O157: H7 ainda é desconhecido; Portanto, o objetivo desta pesquisa foi identificar a alteração no perfil proteico de E. coli O157: H7 após o tratamento com Ib-M1 e IONP @ Ib-M1 como um primeiro passo para determinar seu mecanismo de ação. Para isso, foi realizada a obtenção das proteínas, posteriormente foi realizada uma eletroforese bidimensional para finalmente determinar a variabilidade dos perfis protéicos. Uma vez obtidos os perfis de proteínas, foi realizada uma análise de variância (ANOVA). Os resultados mostram a identificação de proteínas expressas diferencialmente e que estão envolvidas em processos de transferência de grupos acila (proteína Yhbs), translocação de lipoproteínas (proteína LolA) e transporte de aminoácidos (proteína GpmA), entre outros.

6.
Food Res Int ; 139: 109947, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509500

RESUMO

The bacteriophage UFV-AREG1 was used as a model organism to evaluate the encapsulation via extrusion using different hydrocolloids. Pure alginate [0.75%, 1.0%, 1.5% and 2.0% (m/v)] and mixtures of alginate [0.75% or 1.0% (m/v)] with carrageenan [1.25% (m/v)], chitosan [0.5% (m/v)], or whey protein [1.5% (m/v)] were used to produce bacteriophage-loaded beads. The encapsulating solutions presented flow behavior of non-Newtonian pseudoplastic fluids and the concentration of hydrocolloid did not influence (p > 0.05) the morphology of the beads, except for alginate-chitosan solutions, which presented the higher flow consistency index (K) and the lower flow behavior index (n). The encapsulation efficiency was about 99% and the confocal photomicrography of the encapsulated bacteriophages labeled with fluorescein isothiocyanate showed homogenous distribution of the viral particles within the beads. The phages remained viable in the beads of alginate-whey protein even when submitted to pH 2.5 for 2 h. Beads incubated directly in simulated intestinal fluid (pH 6.8) resulted in a minimal of 50% release of the UFV-AREG1 phages after 5 min, even when previously submitted to the simulated gastric fluid (pH 2.5). Encapsulation enabled phages to remain viable under refrigeration for five months. Encapsulated UFV-AREG1 phages were sensitive to dehydration, suggesting the need for protective agents. In this study, for the first-time bacteriophages were encapsulated in alginate-carrageenan beads, as well as alginate-chitosan as a bead-forming hydrocolloid. In addition, a novel procedure for encapsulating bacteriophages in alginate-whey protein was proposed. The assembled system showed efficiency in the encapsulation of UFV-AREG1 bacteriophages using different hydrocolloids and has potential to be used for the entrapment of a variety of bioactive compounds.


Assuntos
Alginatos , Bacteriófagos , Preparações de Ação Retardada , Ácido Glucurônico , Ácidos Hexurônicos , Polímeros
7.
Molecules ; 25(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679681

RESUMO

This study investigated the isolated effect of modified atmosphere packaging (MAP; 50% CO2 and 50% N2) and ultraviolet radiation (UV; 0.30 J/cm2) as well as their combined (MAP/UV) effect on reduction of Salmonella typhimurium and Escherichia coli O157:H7, biogenic amines (BA), and on shelf life of tilapia fillets stored at 4 ± 1 °C for 10 days. UV samples had the highest reduction of S. typhimurium (1.13 log colony forming units/g; CFU/g) and E. coli O157:H7 (0.70 log CFU/g). MAP and MAP/UV reduced the growth of S. typhimurium in 0.50 log CFU/g and did not affect the growth of E. coli O157:H7. UV, MAP, and MAP/UV increased lag phase and/or generation time of all evaluated bacterial groups, decreased pH values, ammonia formation, texture changes, and, in general, the BA formation throughout storage period, and, therefore, UV, MAP, and MAP/UV extended the shelf life for two, three, and at least five days, respectively. MAP/UV, MAP, and UV decreased redness, MAP/UV and MAP increased yellowness and lipid oxidation, while UV did not affect it. MAP/UV demonstrated promising results for shelf life extension; however, different gas ratios in combination with other ultraviolet radiation type C (UV-C) doses should be investigated to reach the highest microbiological safety and maintenance of the overall quality of tilapia fillets.


Assuntos
Atmosfera , Aminas Biogênicas/análise , Embalagem de Alimentos , Conservação de Alimentos , Alimentos Marinhos/análise , Tilápia , Raios Ultravioleta , Animais , Análise de Alimentos
8.
J Microbiol Methods ; 165: 105691, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31437554

RESUMO

The different morphological characteristics of five bacterial pathogen strains were analyzed through transmission electron microscopy for addressing the particular relationship between optical density and colony-forming units for each strain. Generated linear equations will allow a reliable calculation of bacterial concentrations through simple optical density measurements.


Assuntos
Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/isolamento & purificação , Microscopia Eletrônica de Transmissão/métodos , Salmonella typhimurium/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Contagem de Colônia Microbiana/métodos , Manipulação de Alimentos/métodos
9.
J Food Prot ; 81(9): 1549-1556, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30132718

RESUMO

The growing demand for fruit and vegetable juice blends, with improved nutritional and sensory attributes, has prompted the industrial adoption of nonthermal processing technologies, including UV light. Limited studies have explored conditions to overcome the well-known limitations of UV when treating liquid foods with a high content of particles that absorb or scatter UV light. This study addressed the effectiveness of the application of UV light, using a commercial processing unit, to inactivate pathogenic Escherichia coli O157:H7, Salmonella enterica (hereafter Salmonella), and Listeria monocytogenes, as well as spoilage microorganisms, in colored and turbid juices and beverages. The inactivation of cocktails of five strains (or serotypes) of E. coli O157:H7, Salmonella, and L. monocytogenes isolated from fruit- and vegetable-derived products linked to outbreaks was determined in seven colored and turbid cold-pressed juices and beverages. Juices and beverages were UV treated at a constant flow rate of 150 L/h through multiple consecutive passes. The inactivation of aerobic mesophilic bacteria, molds and yeasts, and lactic acid bacteria was also assessed at the cumulative dose that guaranteed a 5-log reduction of the most UV-tolerant pathogen for each product. A 5-log reduction of the three pathogens was achieved in all juices and beverages at a maximum cumulative UV dose of 12.0 ± 0.6 mJ/cm2. The dose required to ensure the targeted reduction varied depending on the tested product and the inoculated pathogen. The reduction of aerobic mesophiles, molds and yeasts, and lactic acid bacteria varied from 0.5 to 3.6, from 0.2 to 2.0, and from 0.5 to 3.6 log CFU/mL, respectively. Thus, the proposed treatment represents a suitable processing alternative to ensure the safety and extend the shelf life of colored and turbid cold-pressed juices and beverages.


Assuntos
Sucos de Frutas e Vegetais , Raios Ultravioleta , Contagem de Colônia Microbiana , Escherichia coli O157/efeitos da radiação , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Sucos de Frutas e Vegetais/normas , Humanos , Listeria monocytogenes/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação
10.
J Int Med Res ; 46(7): 2875-2882, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29877099

RESUMO

Objective To develop a bioluminescence-labelled bacterial infection model to monitor the colonization and clearance process of Escherichia coli O157:H7 in the lungs of mice following influenza A virus/Puerto Rico/8/34 (H1N1) strain (IAV/PR8) infection. Methods BALB/c mice were administered IAV/PR8 or 0.01 M phosphate-buffered saline (PBS; pH 7.4) intranasally 4 days prior to intranasal administration of 1 × 107 colony-forming units (CFU) of E. coli O157:H7-lux. Whole-body bioluminescent signals were monitored at 10 min, 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Lung bioluminescent signals and bacterial load (CFU/g) were monitored at 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Results Prior IAV/PR8 infection of mice resulted in a higher level of bacterial colonization and a lower rate of bacterial clearance from the lungs compared with mice treated with PBS. There were also consistent findings between the bioluminescence imaging and the CFU measurements in terms of identifying bacterial colonization and monitoring the clearance dynamics of E. coli O157:H7-lux in mouse lungs. Conclusion This novel bioluminescence-labelled bacterial infection model rapidly detected bacterial colonization of the lungs and monitored the clearance dynamics of E. coli O157:H7-lux following IAV/PR8 infection.


Assuntos
Coinfecção/microbiologia , Coinfecção/virologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Pulmão/microbiologia , Pulmão/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Animais , Modelos Animais de Doenças , Feminino , Medições Luminescentes , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA