Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Behav Brain Res ; 453: 114615, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37558167

RESUMO

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Assuntos
Acetilcolinesterase , Disfunção Cognitiva , Animais , Masculino , Ratos , Acetilcolinesterase/metabolismo , Aspartame/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Ratos Wistar , Receptor trkB/metabolismo , Transdução de Sinais , Tropomiosina/metabolismo
2.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770924

RESUMO

This literature-based review synthesizes the available scientific information about steviol glycosides as natural sweeteners and molecules with therapeutic potential. In addition, it discusses the safety concerns regarding human consumption. Steviol glycosides exhibit a superior sweetener proficiency to that of sucrose and are noncaloric, noncariogenic, and nonfermentative. Scientific evidence encourages stevioside and rebaudioside A as sweetener alternatives to sucrose and supports their use based on their absences of harmful effects on human health. Moreover, these active compounds isolated from Stevia rebaudiana possess interesting medicinal activities, including antidiabetic, antihypertensive, anti-inflammatory, antioxidant, anticancer, and antidiarrheal activity. The described bioactivities of steviol glycosides deserve special attention based on their dose dependence and specific pathological situations. Further clinical research is needed to understand underlying mechanisms of action, therapeutic indexes, and pharmacological applications.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Humanos , Glucosídeos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Edulcorantes/farmacologia , Sacarose , Glicosídeos/farmacologia
3.
J Food Sci ; 88(4): 1731-1742, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789859

RESUMO

Several studies demonstrated the toxicity of aspartame (ASP) and aflatoxin B1 (AFB1 ) in preclinical models. Although the majority of these reports assessed the toxic effects of each substance separately, their concomitant exposure and hazardous consequences are scarce. Importantly, the deleterious effects at the central nervous system caused by ASP and AFB1 co-exposure are rarely addressed. We evaluated if concomitant exposure to AFB1 and ASP would cause behavioral impairment and alteration in oxidative status of the brain in male rats. Animals received once a day for 14 days AFB1 (250 µg/kg, intragastric gavage [i.g.]), ASP (75 mg/kg, i.g.), or both substances (association). On day 14, they were subjected to behavioral evaluation, and biochemical and molecular parameters of oxidative status were measured in the cerebral cortex and hippocampus. In the open field test, AFB1 and combination treatments modified the motor, exploratory, and grooming behavior. In the splash test, all treatments caused a reduction in grooming time compared to the control group. An increase in thiobarbituric acid-reactive substances content induced by AFB1 and combination treatments was observed. The antioxidant defenses (vitamin C, nonprotein sulfhydryl, and ferric reducing antioxidant power) were impaired in all groups compared to control. Regarding molecular evaluation, mitochondrial superoxide dismutase-2 immunoreactivity decreased after AFB1 or ASP exposition in the hippocampus. Thus, co-exposure to ASP and AFB1 was potentially more toxic because it aggravated behavioral impairments and oxidative status disbalance in comparison to the groups that received only ASP or AFB1 . Therefore, our data suggest that those substances caused a disruption in brain homeostasis.


Assuntos
Aflatoxina B1 , Antioxidantes , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Aflatoxina B1/toxicidade , Aspartame/toxicidade , Ácido Ascórbico/farmacologia , Hipocampo/metabolismo , Estresse Oxidativo
4.
Biol Reprod ; 108(1): 98-106, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36219170

RESUMO

We investigated the effects of fetal programming in Sprague-Dawley rats through the maternal consumption of sodium saccharin on the testicular structure and function in male offspring. Feed intake and efficiency, organ and fat weight, quantification and expression of androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) proteins, sperm count, and hormone levels were determined. Consumption alterations were found in the final weeks of the experiment. Decreases in AR and PCNA expression and quantification, tubular diameter, and luminal volume, and increases in epithelial and interstitial relative volumes were observed. Lower sperm count and transit, and lower estradiol concentration were also found. Sodium saccharin consumption by dams programmed male offspring by affecting the hypothalamic-pituitary-gonad axis with alterations in the Sertoli cell population, in spermatogonia proliferation, the expression and quantification of AR, and in sperm count. We hypothesized that these changes may be due to an estradiol reduction that caused the loosening of adhesion junctions of the blood-testis barrier, causing cell losses during spermatogenesis, also reflected by a decrease in tubular diameter with an increase in epithelial volume and consequent decrease in luminal volume. We conclude that maternal sodium saccharin consumption during pregnancy and lactation programmed alterations in the reproductive parameters of male offspring, thus influencing spermatogenesis.


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Ratos , Masculino , Animais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sacarina/metabolismo , Sacarina/farmacologia , Testosterona/farmacologia , Ratos Wistar , Ratos Sprague-Dawley , Sêmen/metabolismo , Testículo/metabolismo , Lactação , Estradiol/farmacologia , Sódio/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
5.
Rev. chil. nutr ; 49(5)oct. 2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1407844

RESUMO

RESUMEN La sucralosa es un edulcorante no calórico de amplio consumo a nivel mundial, es considerado como un aditivo seguro, debido a que es eliminado en periodos cortos de tiempo. Recientemente se evidenció su bioacumulación en tejido adiposo, donde se encuentran inmersos macrófagos, células del sistema inmune involucradas en el desarrollo de la inflamación sistémica de bajo grado. A la fecha, no se cuenta con suficiente información para demostrar si los edulcorantes potencian los procesos inflamatorios alterando la función de células presentes en tejido y/o contribuyen en el desarrollo de patologías metabólicas. Por lo anterior, en nuestro trabajo se evaluó el efecto de la sucralosa en la viabilidad de los macrófagos diferenciados de la línea celular monocítica THP-1, por azul de tripán y ensayos de MTT, así como su efecto en la polarización M1/M2 por PCR según la expresión de IRF4, IRF5, STAT1, STAT6, perfil de expresión de IL-6, IL-12, TNF-α, TGF-β, IL-10 y SOCS3 por qPCR, y la cuantificación de la quimiocina IP-10 por ELISA. Los resultados indicaron que la sucralosa no tiene efectos citotóxicos, pero disminuye el número de células viables metabólicamente activas determinadas por MTT de manera dependiente de la concentración. La sucralosa incrementa la concentración de la quimiocina IP-10 y la expresión génica del factor de transcripción IRF5 y disminuye la expresión de IRF4 y STAT6, favoreciendo la polarización hacia poblaciones M1. La bioacumulación de sucralosa en tejido adiposo, y su interacción con macrófagos, podría inducir su polarización a M1.


ABSTRACT Sucralose is a non-nutritive sweetener widely consumed worldwide; it is considered a safe additive because it is eliminated quickly. Recently its bioaccumulation in adipose tissue was evidenced, where macrophages, cells of the immune system involved in developing low-grade systemic inflammation, are found. To date, there is a paucity of information regarding whether sweeteners potentiate inflammatory processes by altering the function of cells present in tissue and/or contribute to the development of metabolic pathologies. We evaluate the effect of sucralose on the viability of differentiated macrophages of the monocytic cell line THP-1, by trypan blue and MTT assays, respectively, as well as its effect on M1/ M2 by PCR according to the expression of IRF4, IRF5, STAT1, STAT6, expression profile of IL6, IL-12, TNF-α, TGF-β, IL-10 and SOCS3 by qPCR, and the quantification of the chemokine IP-10 by ELISE. The results indicated that sucralose has no cytotoxic effects but decreases the number of metabolically active viable cells determined by MTT of macrophages in a concentration-dependent manner. Sucralose increased the concentration of the chemokine IP-10 and the gene expression of the transcription factors IRF5 and decreased the expression of IRF4 and STAT 6 gene expression, favoring polarization towards M1 populations. The bioaccumulation of sucralose in adipose tissue, and its interaction with macrophages, could induce its polarization to M1.

6.
Endocrinol Diabetes Nutr (Engl Ed) ; 69(3): 168-177, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35396115

RESUMO

BACKGROUND: The consumption of artificially sweetened beverages (ASBs) has been linked to metabolic alterations. The effect of reducing the regular consumption of these beverages on the metabolism is currently unknown. OBJECTIVE: To evaluate the effect of reducing consumption of ASBs on the metabolism in overweight young adults. DESIGN: A randomised, single-blind, controlled, 12-week, clinical trial was performed in overweight young adults who regularly consume ASBs. The 45 subjects who participated in the study were randomly divided into two groups: (1) control group (n=21) and (2) intervention group (no intake of ASBs, n=24). Body weight and composition, fasting plasma concentrations of glucose, triglycerides, insulin, cholesterol, low-density lipoproteins and high-density lipoproteins were measured at the beginning and end of the study. and the HOMA-IR was calculated. RESULTS: At the end of 12 weeks, the intervention group showed a significant decrease (as opposed to an increase in the control group) in the percentage of change in body weight (-1.22% vs 1.31%, p<0.004), body fat (-6.28% vs 6.15%, p<0.001) and insulin resistance index (-12.06 vs 38.21%, p<0.00002), as well as in levels of glucose (-4.26% vs 0.51%, p<0.05), triglycerides (-14.74% vs 19.90%, p<0.006), insulin (-8.02% vs 39.23%, p<0.00005), cholesterol (-8.71% vs 0.77%, p<0.01) and LDL (-9.46% vs 9.92%, p<0.004). CONCLUSION: A reduction in habitual consumption of ASBs in overweight young adults decreases biochemical measurements, body weight and composition, suggesting a participation in the metabolic processes.


Assuntos
Sobrepeso , Edulcorantes , Bebidas Adoçadas Artificialmente , Peso Corporal , Fatores de Risco Cardiometabólico , Colesterol , Glucose , Humanos , Insulina , Método Simples-Cego , Edulcorantes/efeitos adversos , Triglicerídeos , Adulto Jovem
7.
Sci Total Environ ; 829: 154689, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35314215

RESUMO

Sucralose (SUC) is the most consumed artificial sweetener worldwide, not metabolized by the human body, and barely eliminated from water in wastewater treatment plants. Although different studies have reported high concentrations of this sweetener in aquatic environments, limited to no information is known about the toxic effects this drug may produce over water organisms. Moreover, most of the current studies have used non-environmentally relevant concentrations of SUC for these effects. Herein, we aimed to evaluate the harmful effects that environmentally relevant concentrations of SUC may induce in the early life stages of Danio rerio. According to our results, SUC altered the embryonic development of D. rerio, producing several malformations that led to their death. The major malformations were scoliosis, pericardial edema, yolk deformation, and tail malformation. However, embryos also got craniofacial malformations, eye absence, fin absence, dwarfism, delay of the hatching process, and hypopigmentation. SUC also generated an oxidative stress response in the embryos characterized by an increase in the levels of lipid peroxidation, hydroperoxides, and carbonyl proteins. To overcome this oxidative stress response, we observed a significant increase in the levels of antioxidant enzymes superoxide dismutase and catalase. Moreover, a significant boost in the expression of antioxidant defense-related genes, Nuclear respiratory factor 1a (Nrf1a) and Nuclear respiratory factor 2a (Nrf2a), was also observed at all concentrations. Concerning apoptosis-related genes, we observed the expression of Caspase 3 (CASP3) and Caspase 9 (CASP9) was increased in a concentration-dependent manner. Overall, we conclude environmentally relevant concentrations of SUC are harmful to the early life stages of fish as they produce malformations, oxidative stress, and increased gene expression of apoptosis-related genes on embryos.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antioxidantes/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário , Estresse Oxidativo , Sacarose/análogos & derivados , Edulcorantes/metabolismo , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
8.
Foods ; 11(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053976

RESUMO

The study evaluated the effect of peach juice sweetened with sucrose, widely used non-nutritive sweeteners, the artificial sucralose, neotame blend, and the natural stevia extract with different rebaudioside A concentrations on the temporal and quantitative descriptive profile, and consumer acceptance of the beverage. The sensory profiling was determined by quantitative descriptive and time-intensity analyses. The results showed that the sweeteners neotame and sucralose present higher sweetening power, and the different rebaudioside A concentrations did not affect the sweetening power of the stevia extract. The samples sweetened with stevia with 40% and 95% of rebaudioside A were characterized by the sensory attributes bitter taste, bitter aftertaste, astringency, and black tea flavor, with a negative influence on the consumers' acceptance. The different concentrations of rebaudioside A in stevia interfered substantially in the descriptors bitter taste and bitter aftertaste, showing that the higher the percentage of rebaudioside A, the lower bitterness of peach juice.

9.
J Dent ; 115: 103835, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653536

RESUMO

OBJECTIVE: This study compared the effect of commercial and pure sweetener containing stevia to that of aspartame, to sucrose and xylitol on the development of dental caries. METHODS: 228 bovine enamel and root dentin were exposed to microcosm biofilm model using human saliva. From the 2nd to the 5th day, the samples were exposed daily to McBain saliva supplemented with 0.2% of the respective sweeteners/sugar, under 5% CO2 and 37 °C. The lactic acid and the colony-forming units (CFU) were quantified. The demineralization was analyzed by TMR. The data were compared statistically (Kruskal-Wallis/ Dunn, p<0.05). RESULTS: Pure stevia, pure aspartame, xylitol and control were able to significantly reduce 92% of lactate production compared to sucrose. Stevia finn, aspartame finn and sucrose showed similar production of lactic acid (around 0.45±0.12 g/L and 0.67±0.18 g/L, for enamel and dentin, p<0.0001). With respect to total lactobacilli and S. mutans/S. sobrinus CFU, xylitol and control did not show growth on enamel, while CFU numbers were found in stevia finn, aspartame finn and sucrose groups for both tissues. Enamel and dentin demineralization was significantly reduced for xylitol, control, pure stevia and pure aspartame (85% and 83% reduction, respectively) compared to stevia finn, aspartame finn and sucrose, which in turn did not differ from each other (sucrose ΔZ: 2913.7 ± 646.7 vol%.µm for enamel and 3543.3 ± 432.5 vol%.µm for dentin). CONCLUSIONS: Commercial sweeteners containing stevia and aspartame proved to be as cariogenic as sucrose, which may be due to the other components, since the pure forms were not cariogenic. CLINICAL RELEVANCE: Our study showed that some commercial sweeteners (aspartame and stevia) are as cariogenic as sucrose, which may be due to the presence of lactose. The population should be advice about the presence of lactose in such brand names, to avoid their consume.


Assuntos
Cárie Dentária , Stevia , Desmineralização do Dente , Animais , Biofilmes , Bovinos , Cárie Dentária/prevenção & controle , Esmalte Dentário , Dentina , Humanos , Streptococcus mutans , Edulcorantes/farmacologia , Desmineralização do Dente/induzido quimicamente
10.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34274304

RESUMO

BACKGROUND: The consumption of artificially sweetened beverages (ASBs) has been linked to metabolic alterations. The effect of reducing the regular consumption of these beverages on the metabolism is currently unknown. OBJECTIVE: To evaluate the effect of reducing consumption of ASBs on the metabolism in overweight young adults. DESIGN: A randomised, single-blind, controlled, 12-week, clinical trial was performed in overweight young adults who regularly consume ASBs. The 45 subjects who participated in the study were randomly divided into two groups: (1) control group (n=21) and (2) intervention group (no intake of ASBs, n=24). Body weight and composition, fasting plasma concentrations of glucose, triglycerides, insulin, cholesterol, low-density lipoproteins and high-density lipoproteins were measured at the beginning and end of the study. and the HOMA-IR was calculated. RESULTS: At the end of 12 weeks, the intervention group showed a significant decrease (as opposed to an increase in the control group) in the percentage of change in body weight (-1.22% vs 1.31%, p<0.004), body fat (-6.28% vs 6.15%, p<0.001) and insulin resistance index (-12.06 vs 38.21%, p<0.00002), as well as in levels of glucose (-4.26% vs 0.51%, p<0.05), triglycerides (-14.74% vs 19.90%, p<0.006), insulin (-8.02% vs 39.23%, p<0.00005), cholesterol (-8.71% vs 0.77%, p<0.01) and LDL (-9.46% vs 9.92%, p<0.004). CONCLUSION: A reduction in habitual consumption of ASBs in overweight young adults decreases biochemical measurements, body weight and composition, suggesting a participation in the metabolic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA