Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110400

RESUMO

There is an expanding market for beer of different flavors. This study aimed to prepare a craft Belgian-style pale ale with a non-Saccharomyces yeast. Pichia kudriavzevii 4A was used as a sole starter culture, and malted barley as the only substrate. The ingredients and brewing process were carefully monitored to ensure the quality and innocuousness of the beverage. During fermentation, the yeast consumed 89.7% of total sugars and produced 13.8% v/v of ethanol. The product was fermented and then aged for 8 days, adjusted to 5% v/v alcohol, and analyzed. There were no traces of mycotoxins, lead, arsenic, methanol, or microbiological contamination that would compromise consumer health. According to the physicochemical analysis, the final ethanol concentration (5.2% v/v) and other characteristics complied with national and international guidelines. The ethyl acetate and isoamyl alcohol present are known to confer sweet and fruity flavors. The sensory test defined the beverage as refreshing and as having an apple and pear flavor, a banana aroma, and a good level of bitterness. The judges preferred it over a commercial reference sample of Belgian-style pale ale made from S. cerevisiae. Hence, P. kudriavzevii 4A has the potential for use in the beer industry.

2.
Food Microbiol ; 103: 103958, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082075

RESUMO

The fermented beverage industry is always pursuing alternatives to make products that delight consumers with special or unique characteristics. The identification and improvement of new yeast strains emerge as an opportunity; however, wild strains usually have a limitation in maltose fermentation and/or off-flavors production. Here we report the production of a Blond-style ale beer using a bioethanol isolated strain (LBGA-287) with flavor complexity approved in sensorial panels. LBGA-287 also showed an increase in maltose consumption, growth and fermentation rates when compared to the commercial yeast. Using qPCR analysis, genes related to the (i) efficiency of fermentation (ii) production of aromas/off-flavors, and (iii) metabolization of carbohydrates were found as differentially expressed in the isolated strains when compared to industrial yeast. This suggests that LBGA-287 could have an important impact on beer production, improving brewing efficiency, quality and diversity of this beverage, and most importantly satisfying the final consumer.


Assuntos
Cerveja , Saccharomyces cerevisiae , Cerveja/análise , Etanol/análise , Fermentação , Bebidas Fermentadas , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA