Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.886
Filtrar
1.
Front Genet ; 15: 1392670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149588

RESUMO

Background: Identifying molecular mechanisms responsible for the response to heat stress is essential to increase production, reproduction, health, and welfare. This study aimed to identify early biological responses and potential biomarkers involved in the response to heat stress and animal's recovery in tropically adapted beef cattle through proteomic analysis of blood plasma. Methods: Blood samples were collected from 14 Caracu males during the heat stress peak (HSP) and 16 h after it (heat stress recovery-HSR) assessed based on wet bulb globe temperature index and rectal temperature. Proteome was investigated by liquid chromatography-tandem mass spectrometry from plasma samples, and the differentially regulated proteins were evaluated by functional enrichment analysis using DAVID tool. The protein-protein interaction network was evaluated by STRING tool. Results: A total of 1,550 proteins were detected in both time points, of which 84 and 65 were downregulated and upregulated during HSR, respectively. Among the differentially regulated proteins with the highest absolute log-fold change values, those encoded by the GABBR1, EPHA2, DUSP5, MUC2, DGCR8, MAP2K7, ADRA1A, CXADR, TOPBP1, and NEB genes were highlighted as potential biomarkers because of their roles in response to heat stress. The functional enrichment analysis revealed that 65 Gene Ontology terms and 34 pathways were significant (P < 0.05). We highlighted those that could be associated with the response to heat stress, such as those related to the immune system, complement system, hemostasis, calcium, ECM-receptor interaction, and PI3K-Akt and MAPK signaling pathways. In addition, the protein-protein interaction network analysis revealed several complement and coagulation proteins and acute-phase proteins as important nodes based on their centrality and edges. Conclusion: Identifying differentially regulated proteins and their relationship, as well as their roles in key pathways contribute to improve the knowledge of the mechanisms behind the response to heat stress in naturally adapted cattle breeds. In addition, proteins highlighted herein are potential biomarkers involved in the early response and recovery from heat stress in tropically adapted beef cattle.

2.
Braz J Microbiol ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143403

RESUMO

Bovine respiratory disease (BRD) is a common global health problem in dairy cattle. The definitive diagnosis of BRD is complex because its etiology involves several predisposing and determining factors. This report describes the etiology of a BRD outbreak in a dairy herd in the mesoregion of Central Eastern Paraná, which simultaneously affected young (calves and heifers) and adult (cows) Holstein-Friesian cattle. Nine biological samples, consisting of five lung samples from two cows and three suckling calves, and four nasal swab samples from heifers, were used for etiological diagnosis. The nucleic acids extracted from lung fragments and nasal swabs were subjected to PCR and RT-PCR assays for partial amplification of the genes of five viruses [bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoAHV1), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (BPIV-3), and bovine coronavirus (BCoV)] and four bacteria (Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) involved in the etiology of BRD. All nine biological samples from the animals with BRD tested negative for BoAHV1, BRSV, BPIV-3, BCoV, and H. somni. Therefore, the involvement of these microorganisms in the etiology of BRD outbreak can be ruled out. It was possible to identify the presence of BVDV and M. bovis in singular and mixed infections of the lower respiratory tract in cattle. BVDV was also identified in two nasal swabs: one as a single etiological agent and the other in association with two bacteria (P. multocida and M. haemolytica). The phylogenetic analysis conducted in the nucleotide sequence of the 5'UTR region and Npro gene of the BVDV amplicons demonstrated that the BVDV field strains of this BRD outbreak belong to subgenotype 2b. To the best of our knowledge, this is the first report of BVDV-2b involvement in the etiology of BRD in Brazil. Finally, it is necessary to highlight that the cattle were obtained from an open dairy herd with biannual vaccinations for BVDV-1a and - 2a.

3.
Front Vet Sci ; 11: 1367810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086766

RESUMO

Bovine leukemia virus (BLV) establishes a lifelong persistent infection in dairy cattle. White blood cell count (WBC) is correlated with proviral load in the blood and milk of BLV-infected cattle, and testing WBC can be used to assess both BLV infectiousness levels and risk of BLV transmission from different types of infected animals. The objective of the study was to compare effective transmission rates (ß) and the basic reproduction ratio (R o) among two types of BLV-infected dairy cows in Chile: those affected with persistent lymphocytosis (PL) vs. aleukemic (AL).The estimated (ß) coefficient was higher in PL cattle [1.1; 95% Confidence interval (CI) (-1.6, 3.8)], compared to AL cattle (-3.1; 95% CI = -3.7, -2.5). In addition, the R o was higher in PL cattle (60.4; 95% CI = 3.5; 820.6), compared to AL cattle (1.5; 95% CI = 0.7, 3.1). The ratio between PL/AL expected rate of cases was 73.9. The estimated effective transmission rate and the Ro were higher in PL cattle compared to AL cattle. The WBC test is a convenient alternative that can be considered for risk identification and risk management of BLV infection in dairy herds; particularly in livestock regions where laboratory capacity is limited (e.g., use of PCR or gene sequencing techniques) and/or molecular tests are not cost-effective. Therefore, when prevalence of infection is high, the removal of PL cattle should be engaged to control BLV within-herds.

4.
Theriogenology ; 228: 64-74, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098122

RESUMO

In vivo, the temperature inside preovulatory follicles of cows is approximately 1 °C lower than rectal temperature. However, standard bovine oocyte in vitro maturation (IVM) protocols use 38.5 °C based on rectal temperature. This study evaluated the effect of reducing IVM temperature to 37.5 °C on the proteomic profile of oocytes compared to the routine 38.5 °C. Nuclear maturation rate and cumulus cell (CC) expansion (30 COCs per group, 21 replicates) were assessed by observing the first polar body and using a subjective scoring method (0-4). Total nitrite concentrations in the culture medium were measured using the Griess method. Differential proteomics was performed using LC-MS/MS on pooled oocyte samples (500 matured oocytes per group, three replicates), followed by gene ontology enrichment, protein-protein interaction, and putative miRNA target analyses. No significant differences were observed between the groups in nuclear maturation, CC expansion, or nitrite concentration (P > 0.05). A total of 806 proteins were identified, with 7 up-regulated and 12 down-regulated in the treatment group compared to the control. Additionally, 12 proteins were unique to the control group, and 8 were unique to the treatment group. IVM at 37.5 °C resulted in the upregulation of proteins involved in protein folding and GTP binding, and the downregulation of enzymes with oxidoreductase activity and proteins involved in cytoskeletal fiber formation. Furthermore, 43 bovine miRNAs potentially regulating these genes (DES, HMOX2, KRT75, FARSA, IDH2, CARHSP1) were identified. We conclude that IVM of bovine oocytes at 37.5 °C induces significant proteomic changes without impacting nuclear maturation, cumulus cell expansion, or nitrite concentration in the IVM medium.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Proteômica , Animais , Bovinos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/fisiologia , Feminino , Temperatura , Proteoma
5.
Animals (Basel) ; 14(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39123787

RESUMO

The Bos Taurus Papillomavirus, commonly known as bovine papillomavirus (BPV), can cause lesions in the mucosa of the gastrointestinal tract (GIT) in cattle and induce the formation of papillomas in organs such as the pharynx, esophagus, rumen and reticulum. GIT papillomas can lead to feeding and breathing distress. Moreover, the sample collection is challenging, which reduces the BPV diagnosis in these organs. BPV can cause exophytic nodular, cauliflower-like, flat, filiform or atypical-shape papillomas at the epidermis. Histologically, the papillomas demonstrate orthokeratotic/parakeratotic hyperkeratosis and koilocytosis and, currently, BPV comprises 45 described types. The aim of this study was to carry out the genetic characterization of BPV present in rumen neoplastic lesions of cattle raised extensively in the Western Amazon region, Brazil. A total of 100 papillomatous ruminal samples were collected from animals slaughtered in Ji-Paraná and Urupá municipalities from the Rondônia state, Brazil. The samples were submitted to PCR using the primer pair FAP59/FAP64 and sequenced by the Sanger method. Histopathological analysis was performed on 24 samples, which had enough material for this purpose. As a result, samples were histologically classified as fibropapilloma and squamous papilloma. Among the samples analyzed, it was possible to identify the BPVs 2, 13 (Delta PVs) and 44, with one sample classified as a putative new subtype of BPV44. The present study could identify BPV13 and 44 types in cattle rumen tissues from the Brazilian Amazon region for the first time.

6.
Animals (Basel) ; 14(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39123806

RESUMO

Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.

7.
Viruses ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066187

RESUMO

Herpesviruses are significant pathogens of ruminants. In water buffaloes (Bubalus bubalis), however, herpesviruses have not been thoroughly studied. Although bubaline alphaherpesvirus 1 (BuAHV1) and bovine alphaherpesvirus 1 (BoAHV1) have already been recovered from water buffaloes, to date, no reports on the occurrence of bovine alphaherpesvirus 5 (BoAHV5) in these animals have been published. Therefore, the aim of this study was to search for BuAHV1, BoAHV1, and BoAHV5 in palatine tonsils of apparently healthy water buffaloes from the Pará state, Northern Brazil. Tissue samples of tonsils (n = 293) were screened by a nested PCR (nPCR) targeting a region of UL44 (gC coding gene), followed by sequencing, to detect and differentiate between the viral types. Viral genome segments were detected in 18 out of 293 (6.1%) of the palatine tonsil samples. Two animals carried genomes of BoAHV1 only, eleven animals carried BoAHV5 genomes only, and four animals carried BuAHV1 only. Another animal had both BoAHV1 and BoAHV5 genomes in its tonsils. No infectious virus could be recovered from any of the samples. The BuAHV1 sequences identified here were more closely related to BuAHV1 genomes identified in India. Phylogenetic analyses suggested a closer relationship between the recovered BoAHV5 and BuAHV1 genomes. Therefore, evidence is provided here to confirm that not only BoAHV1 and BuAHV1, but also BoAHV5, can infect water buffaloes. This report highlights (i) the first detection of BoAHV5 in water buffaloes and (ii) the occurrence of coinfections with BoAHV1 and BoAHV5 in that species. Such findings and the similarity of BoAHV5 to Indian herpesvirus genomes suggest that the origin of type 5 may be linked to recombinations between bovine and bubaline herpesviruses within bubalines, since the scenario for generation of recombinants in buffaloes is potentially present.


Assuntos
Alphaherpesvirinae , Búfalos , Infecções por Herpesviridae , Tonsila Palatina , Animais , Bovinos , Alphaherpesvirinae/genética , Alphaherpesvirinae/isolamento & purificação , Alphaherpesvirinae/classificação , Brasil , DNA Viral/genética , Genoma Viral , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Tonsila Palatina/virologia , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
8.
Microorganisms ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39065099

RESUMO

This study aimed to determine the impact of age on the fecal microbiota in the genetic nucleus of cattle, with a focus on microbial richness, composition, functional diversity, and correlations with blood parameters. Fecal and blood samples from 21 cattle were analyzed using 16S rRNA gene sequencing. Older cattle exhibited greater bacterial diversity and abundance, with significant changes in alpha diversity indices (p < 0.05). Beta diversity analysis revealed significant variations in microbial composition between age groups and the interaction of age and sex (p < 0.05). Correlations between alpha diversity, community composition, and hematological values highlighted the influence of microbiota on bovine health. Beneficial butyrate-producing bacteria, such as Ruminococcaceae, were more abundant in older cattle, suggesting a role in gut health. Functional diversity analysis indicated that younger cattle had significantly more abundant metabolic pathways in fermentation and anaerobic chemoheterotrophy. These findings suggest management strategies including tailored probiotic therapies, dietary adjustments, and targeted health monitoring to enhance livestock health and performance. Further research should include comprehensive metabolic analyses to better correlate microbiota changes with age-related variations, enhancing understanding of the complex interactions between microbiota, age, and reproductive status.

10.
Vet Res Commun ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980588

RESUMO

Postpartum reproductive infections in cows generate significant economic losses. The use of lactic acid bacteria in animal health is an alternative tool to avoid antibiotic therapy in the prevention/treatment of bovine reproductive infections. In previous studies, 6 lactic bacteria from bovine mammary glands and vagina with beneficial, safe and technological characteristics were selected, and included in probiotic/phytobiotic formulas (combined with Malva and Lapacho extracts). In this work, probiotic and phytobiotic formulations were designed and their long-term viability determined. They were administered intravaginally to 30 females pregnant bovine pre and postpartum. The modification of the native microbiota and permanence/colonization of cultivable bacteria was evaluated, and also the safety of the designed products through the application of nutritional, clinical, hematological and biochemical parameters. The microorganisms maintained their viability up to 9 months at refrigeration temperature. The number of cultivable bacteria showed different pattern: total aerobic mesophylls increased slightly in all experimental groups, while Enterobacteriaceae increased after delivery, except in beneficial acid lactic bacteria + vegetable extract cows. Control and vegetable extract females showed the highest numbers of Enterobacteriaceae at the end of the trial (30 days postpartum). The number of lactic acid bacteria increased significantly in all the groups between 15 days pre and postpartum. The different parameters evaluated demonstrate the safety and harmlessness of the designed formulas, without producing local and systemic adverse effects in the cows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA