Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1356028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835975

RESUMO

The increasing risk of amputation due to diabetic foot ulcer calls for new therapeutic options; for that, we determined the role of IMMUNEPOTENT CRP (ICRP) and its parts in the wound healing process of superficial wounds in diabetic BALB/c mice. A potency test was performed to confirm the batch of ICRP, and then its parts were separated into pellets, supernatants, and exosomes, and another group of exosomes loaded with insulin was added. Viability and scratch healing were assessed in NIH-3T3, HUVEC, and HACAT cell lines. Diabetes was induced with streptozotocin, and wounds were made by dissecting the back skin. Treatments were topically applied, and closure was monitored; inflammatory cytokines in sera were also evaluated by flow cytometry, and histological analysis was performed by Masson's staining and immunohistochemistry for p-AKT, p-FOXO, p-P21, and p-TSC2. ICRP pellets and exosomes increased cellular viability, and exosomes and exosome-insulin accelerated scratch healing in vitro. Exosome-insulin releases insulin constantly over time in vitro. In vivo, treatments accelerated wound closure, and better performance was observed in pellet, exosome, and exosome-insulin treatments. Best collagen expression was induced by ICRP. P-AKT and p-FOXO were overexpressed in healing tissues. Inflammatory cytokines were downregulated by all treatments. In conclusion, IMMUNEPOTENT CRP components, especially exosomes, and the process of encapsulation of exosome-insulin accelerate diabetic wound healing and enhance cellular proliferation, collagen production, and inflammation modulation through the phosphorylation of components of the AKT pathway.

2.
Inflammation ; 47(4): 1262-1277, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38236386

RESUMO

Chronic hyperglycemia caused by diabetes mellitus (DM) slows down the healing process due to prolonged inflammation which impedes the regeneration progression. Photobiomodulation (PBM) is considered a non-pharmacological intervention and has anti-inflammatory and biostimulatory effects that accelerate the healing process. Currently found IL-1ß inhibitors are difficult to implement due to their cytotoxic potential, excessive amounts, and invasive administration, and therefore, the application of this peptide in diabetic wounds represents a promising intervention to help resolve the inflammatory response. This study aimed to investigate the effect of an IL-1ß inhibitor molecule associated with PBM irradiation in a model of epithelial injury in diabetic mice. After the induction of the DM model with streptozotocin (STZ), the skin lesion model was implemented through surgical excision. Sixty C57BL/6 mice divided into five experimental groups (n = 12) were used: excisional wound (EW), DM + EW, DM + EW + DAP 1-2 (inhibitor peptide), DM + EW + PBM, and DM + EW + PBM + DAP 1-2. Treatment started 12 h after wound induction and was performed daily for 5 days. Twenty-four hours after the last application, the animals were euthanized and the outer edge of the wound was removed. The results obtained demonstrate that the DM + EW + PBM + DAP 1-2 group caused a reduction in the levels of pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, and an increase in TGF-ß and maintenance of the cellular redox state with a consequent reduction in levels of inflammatory infiltrate and concomitant stimulation of type III collagen gene expression, as well as a decrease in the size of the wound in square centimeter 6 days after the injury. Only the combination of therapies was able to favor the process of tissue regeneration due to the development of an approach capable of acting at different stages of the regenerative process, through the mechanisms of action of interventions on the inflammatory process by avoiding its stagnation and stimulating progression of regeneration.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Camundongos Endogâmicos C57BL , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Terapia com Luz de Baixa Intensidade/métodos , Camundongos , Interleucina-1beta/metabolismo , Masculino
3.
Rev. mex. ing. bioméd ; 43(1): 1207, Jan.-Apr. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1389188

RESUMO

ABSTRACT This project's purpose was to evaluate the healing effects of chitosan (CS) hydrogels loaded with extracts from Aloe vera (CS+AV) and Calendula officinalis (CS+CO) on wounds of diabetic and non-diabetic Wistar rats. A total of 24 rats were used; animals were randomly divided into three diabetic and three non-diabetic groups (one control and two treated groups) and monitored for 13 days. A biopsy on the wound site was recovered to assess the collagen and n-acetyl glucosamine content. The wound area ratio was reduced since day 1 on both non-diabetic treated groups. A similar effect was observed on the diabetic group treated with CS+AV, while the diabetic group treated with CS+CO showed a reduction in wound area compared to the diabetic control until day 11 after being wounded. Collagen and n-acetyl glucosamine content were higher in every treated group. Further studies are needed to clarify the underlying mechanisms through which they promote wound healing. These results suggest that the hydrogels prepared are potential material to be used as wound dressings.


RESUMEN El propósito de este proyecto fue evaluar los efectos curativos de los hidrogeles de quitosano con extractos de Aloe vera (CS + AV) y Calendula officinalis (CS + CO) en heridas en ratas Wistar diabéticas y no diabéticas. Se utilizaron un total de 24 ratas; los animales fueron divididos aleatoriamente en tres grupos diabéticos y tres no diabéticos (un grupo control y dos tratados) y se monitorearon durante 13 días. Se recuperó una biopsia del sitio de la herida para evaluar el contenido de colágeno y n-acetilglucosamina. El área de la herida se redujo desde el día 1 en ambos grupos no diabéticos tratados. Se observó un efecto similar en el grupo diabético tratado con CS + AV, mientras que el grupo diabético tratado con CS + CO mostró una reducción del área de la herida en comparación al control diabético hasta el día 11 después de la creación de la herida. El contenido de colágeno y n-acetilglucosamina fue mayor en todos los grupos tratados. Se necesitan más estudios para aclarar los mecanismos subyacentes a través de los cuales estos tratamientos promueven la cicatrización de heridas. Estos resultados sugieren que los hidrogeles preparados son materiales con potencial para usarse como apósitos para heridas.

4.
Int J Pharm ; 552(1-2): 340-351, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300708

RESUMO

Wound healing can be a painful and time-consuming process in patients with diabetes mellitus. In light of this, the use of wound healing devices could help to accelerate this process. Here, cellulose-based films loaded with vitamin C (VitC) and/or propolis (Prop), two natural compounds with attractive properties were engineered. The starting materials and the cellulose-based films were characterized in detail. As assessed, vitamin C can be released from the Cel-PVA/VitC and Cel-PVA/VitC/Prop films in a controlled manner. In vitro antibacterial activity studies showed a reduction of bacteria counts (Escherichia coli and Staphylococcus aureus) after Cel-PVA/VitC, Cel-PVA/Prop, and Cel-PVA/VitC/Prop treatments. Moreover, we examined the antibacterial and wound healing properties of the cellulose-based films in a streptozotocin (STZ)-induced diabetic animal model. Diabetic mice exhibited impaired wound healing while the Cel-PVA/VitC/Prop treatment increased the wound closure. A marked reduction in bacterial counts present in the wound environment of diabetic mice was observed after Cel-PVA/VitC, Cel-PVA/Prop and Cel-PVA/VitC/Prop treatment. Histological analysis demonstrated that the non-treated diabetic mice group did not exhibit adequate wound healing while the treated group with Cel-PVA/VitC and Cel-PVA/VitC/Prop films presented good cicatricial response. Furthermore, these novel eco-friendly films may represent a new therapeutic approach to accelerate diabetic wound healing.


Assuntos
Antibacterianos/administração & dosagem , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Celulose/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Própole/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Masculino , Camundongos , Oryza , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
5.
Artigo em Inglês | MEDLINE | ID: mdl-22396805

RESUMO

Diabetes mellitus can cause devastating foot problems including loss of protective sensation with subsequent ulcerations and amputations. The natural history and pathophysiology of diabetic foot ulcers is best understood and managed by a multiprofessional team approach. The main factors for prevention and treatment of these devastating diabetic foot conditions are shown, with special attention to education of the patient. This approach decreases the morbidity of the disease, besides its economical and social feasibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA