Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.547
Filtrar
1.
Curr HIV Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39143878

RESUMO

INTRODUCTION: Therapeutic measures have been successful in increasing survival rates and quality of life of HIV/AIDS-infected people. However, some people fail to respond to antiretroviral therapy (HAART) because of viral resistance-associated mutations. OBJECTIVE: To identify virus genotype and the presence of mutations that alter the susceptibility to HAART, and factors associated with the occurrence of these mutations. METHOD: A cross-sectional study was conducted on adults living with HIV attending a specialized outpatient clinic in southern Santa Catarina, Brazil. The participants were interviewed and had blood samples collected for analysis. Those with detectable viral load were genotyped. RESULTS: Out of the 629 patients recruited, 127 subjects were included due to having a detectable viral load. The most common mutations were M184V and K103N. HIV-1 subtype C was the most prevalent strain. Resistance to HAART was associated with modification in the treatment regimen (p <0.001). CONCLUSION: This study concluded that the circulating subtype virus was subtype C and that the mutations K103N and M184V were the most prevalent strains in southern Santa Catarina, Brazil.

2.
Am J Infect Control ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128485

RESUMO

BACKGROUND: Analyze the incidence, risk factors, and fatality rates of bloodstream infections by Gram-negative bacteria (GNB-BSIs) in a Neonatal Intensive Care Unit. METHODS: This study employs a retrospective cohort design utilizing records of neonates admitted to the Neonatal Intensive Care Unit between January 2015 and June 2022. RESULTS: Among 1,495 neonates, 5.2% developed GNB-BSIs. The average incidence of infection per 1,000 patient-days was 2.9. Primary risk factors for infection that included preceeding carbapenem use were significant risk factors (odds ratio=514.4; P < .01) and fourth-generation cephalosporins (odds ratio=66; P < .01). Among the 85 GNB, 75.3% were fermenters, and 24.7% were non-fermenters. Of the isolates, 14.1% produced extended-spectrum beta-lactamase, and 2.3% carbapenem-resistant. Infection correlated with prolonged hospital stays (10-39days) and increased mortality (10%-29.9%). CONCLUSIONS: The high incidence of GNB-BSIs was exacerbated by the preceeding use of broad-spectrum antimicrobials, increasing the presence of multidrug-resistant isolates and fatality rates. These findings emphasize the importance of active surveillance.

3.
Am J Infect Control ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147138

RESUMO

BACKGROUND: In response to a 1995 outbreak of sepsis caused by multidrug-resistant (MR) Gram-negative bacteria (GNB), a Brazilian level III neonatal unit established a series of control and prevention measures. This study evaluated the long-term effects of these measures on late-onset neonatal sepsis (LONS) caused by MR bacteria from 2000 to 2020 and examined their impact on in-hospital mortality. METHODS: Newborns with LONS and positive cultures for Staphylococcus aureus, GNB, and Enterococcus sp were selected, adhering to Center for Desease Control and Prevention and local criteria. Joinpoint regression analysis was used to assess annual trends. RESULTS: Over the 21-year period, the overall LONS rate was 4.6%, showing a significant decline from 2000 to 2016 (P < .0001, slope -0.36). However, from 2016 to 2020, there was a non-significant increase in sepsis rates (slope +0.92, P = .08). MR sepsis were in 15.8% of sepsis cases and displayed a non-significant upward trend (slope +0.50, P = .08) with no major shifts. In-hospital mortality rates for MR and non-MR LONS showed no significant differences (P = .413). DISCUSSION: The study indicates a low prevalence of MR sepsis due to effective antimicrobial use and educational interventions. CONCLUSIONS: MR sepsis prevalence remained low and stable, not increasing in-hospital mortality.

4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125832

RESUMO

It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.


Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , MicroRNAs , PTEN Fosfo-Hidrolase , RNA Longo não Codificante , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Transição Epitelial-Mesenquimal/genética , Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Transdução de Sinais
5.
Clin Transl Oncol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162977

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, characterized by high incidence and mortality rates. Due to its insidious onset, most patients are diagnosed at an advanced stage, often missing the opportunity for surgical resection. Consequently, systemic treatments play a pivotal role. In recent years, an increasing number of drugs have been approved for first-line systemic treatment of HCC. However, their efficacy is limited, and some patients develop drug resistance after a period of treatment. For such patients, there is currently a lack of standard second-line systemic treatment options. This review summarizes the latest advancements in second-line systemic treatment research for HCC patients who have developed resistance to various first-line systemic treatments, aiming to provide more rational and personalized second-line treatment strategies.

6.
Biomedica ; 44(2): 258-276, 2024 05 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-39088536

RESUMO

In Salmonella enterica serovar Typhimurium (Typhimurium), multidrug resistance is associated with integrons carrying resistance genes dispersed by mobile genetic elements. This exploratory systematic review sought to identify integron types and their resistance genes in multidrug resistance Typhimurium isolates. We used Medline, PubMed, SciELO, ScienceDirect, Redalyc, and Google Scholar as motor searchers for articles in Spanish or English published between 2012 and 2020, including the keywords "integrons", "antibiotic resistance", and "Salmonella Typhimurium". We included 38 articles reporting multidrug resistance up to five antibiotic families. Class 1 integrons with aadA2 and blaPSE-1 gene cassettes were predominant, some probably related to the Salmonella genomic island 1. We did not find studies detailing class 1 and 2 integrons in the same isolate, nor class 3 integrons reported. The presence of integrons largely explains the resistance profiles found in isolates from different sources in 15 countries.


La multirresistencia a los antibióticos en Salmonella enterica serovar Typhimurium (Typhimurium) se asocia con integrones que portan genes de resistencia y que son dispersados por elementos genéticos móviles. En esta revisión sistemática exploratoria, se buscó identificar los tipos de integrones y sus genes de resistencia en aislamientos de Typhimurium multirresistentes a antibióticos. Se realizó una búsqueda de artículos en Medline, PubMed, SciELO, ScienceDirect, Redalyc y Google Académico, publicados entre el 2012 y el 2020, en español o inglés, con las palabras claves: "integrons", "antibiotic resistance" y "Salmonella Typhimurium". En el análisis se incluyeron 38 artículos que reportaron multirresistencia a cinco familias de antibióticos. Los integrones de clase 1 con casetes de genes aadA2 y blaPSE-1 fueron los predominantes, algunos probablemente relacionados con la isla genómica de Salmonella 1. No se encontraron integrones de clase 1 y 2 en un mismo aislamiento, ni se reportaron integrones de clase 3. La presencia de integrones explica en gran medida los perfiles de resistencia encontrados en aislamientos de diferentes fuentes de 15 países.


Assuntos
Farmacorresistência Bacteriana Múltipla , Integrons , Salmonella typhimurium , Integrons/genética , Farmacorresistência Bacteriana Múltipla/genética , Salmonella typhimurium/genética , Salmonella typhimurium/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Ilhas Genômicas , Animais
7.
Microbiol Spectr ; 12(8): e0088824, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38980033

RESUMO

Aspergillus fumigatus is the primary etiological agent of aspergillosis. Here, we show that the host defense peptide mimetic brilacidin (BRI) can potentiate ibrexafungerp (IBX) against clinical isolates of A. fumigatus. BRI + IBX can inhibit the growth of A. fumigatus voriconazole- and caspofungin-resistant clinical isolates. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against viruses, bacteria, and fungi. In vitro, combination of BRI + IBX plays a fungicidal role, increases the fungal cell permeability, decreases the fungal survival in the presence of A549 epithelial cells, and appears as a promising antifungal therapeutic alternative against A. fumigatus. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Aspergillus fumigatus causes a series of distinct invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. A. fumigatus causes a spectrum of distinct clinical entities named aspergillosis, which the most severe form is the invasive pulmonary aspergillosis. There are few therapeutic options for treating aspergillosis and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a synergizer o fibrexafungerp (IBX) against A. fumigatus. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. We propose the combination of BRI and IBX as a new antifungal combinatorial treatment against aspergillosis.


Assuntos
Antifúngicos , Aspergillus fumigatus , Aspergillus fumigatus/efeitos dos fármacos , Humanos , Antifúngicos/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Células A549 , Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos
8.
Microorganisms ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39065135

RESUMO

E. coli is considered one of the most important zoonotic pathogens worldwide. Highly virulent and antimicrobial-resistant strains of E. coli have been reported in recent years, making it essential to understand their ecological origins. In this study, we analyzed the characteristics of E. coli strains present in the natural population of American bison (Bison bison) in Mexico. We sampled 123 individuals and determined the presence of E. coli using standard bacteriological methods. The isolated strains were characterized using molecular techniques based on PCR. To evaluate the diversity of E. coli strains in this population, we analyzed 108 suggestive colonies from each fecal sample. From a total of 13,284 suggestive colonies, we isolated 33 E. coli strains that contained at least one virulence gene. The virotypes of these strains were highly varied, including strains with atypical patterns or combinations compared to classical pathotypes, such as the presence of escV, eae, bfpB, and ial genes in E. coli strain LMA-26-6-6, or stx2, eae, and ial genes in E. coli strain LMA-16-1-32. Genotype analysis of these strains revealed a previously undescribed phylogenetic group. Serotyping of all strains showed that serogroups O26 and O22 were the most abundant. Interestingly, strains belonging to these groups exhibited different patterns of virulence genes. Finally, the isolated E. coli strains demonstrated broad resistance to antimicrobials, including various beta-lactam antibiotics.

9.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062846

RESUMO

Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Matriz Extracelular , Ácido Hialurônico , Neoplasias , Transdução de Sinais , Microambiente Tumoral , Humanos , Ácido Hialurônico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais
10.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000531

RESUMO

Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animais , Guanosina/metabolismo , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA