Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
Toxicol Appl Pharmacol ; 491: 117070, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151807

RESUMO

AIMS: It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS: The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS: While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE: Our data show that activation of ß-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.


Assuntos
5'-Nucleotidase , AMP Cíclico , Contração Muscular , Ratos Wistar , Receptor A1 de Adenosina , Ducto Deferente , Masculino , Animais , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo , AMP Cíclico/metabolismo , 5'-Nucleotidase/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/efeitos dos fármacos , Ratos , Contração Muscular/efeitos dos fármacos , Adenosina/farmacologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Isoproterenol/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Colforsina/farmacologia
2.
Mol Cell Endocrinol ; 591: 112279, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797355

RESUMO

Isoproterenol administration is associated with cardiac inflammation and decreased NO availability. Melatonin has been reported to have cardioprotective effect. The aim of this study was to investigate the effect of melatonin on NO bioavailability and inflammation in myocardial injury induced by isoproterenol. Isoproterenol was administrated in male Wistar rats for 7 days to induce cardiac injury. The animals were divided into 3 groups: Control, Isoproterenol, Isoproterenol + Melatonin. Animals received melatonin for 7 days. Echocardiographic analysis was performed and the hearts were collected for molecular analysis. Animals that received isoproterenol demonstrated a reduction in left ventricle systolic and diastolic diameter, indicating the presence of concentric hypertrophy. Melatonin was able to attenuate this alteration. Melatonin also improved NO bioavailability and decreased NF-κß, TNFα and IL-1ß expression. In conclusion, melatonin exhibited a cardioprotective effect which was associated with improving NO bioavailability and decreasing the pro-inflammatory proteins.


Assuntos
Disponibilidade Biológica , Isoproterenol , Melatonina , Óxido Nítrico , Ratos Wistar , Animais , Melatonina/farmacologia , Óxido Nítrico/metabolismo , Masculino , Ratos , Cardiotônicos/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/patologia
3.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712392

RESUMO

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corticosterona , Isoproterenol , Animais , Masculino , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Corticosterona/metabolismo , Meios de Cultivo Condicionados/farmacologia , Isoproterenol/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo
4.
Free Radic Res ; 58(4): 293-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630026

RESUMO

Calorie restriction is a nutritional intervention that reproducibly protects against the maladaptive consequences of cardiovascular diseases. Pathological cardiac hypertrophy leads to cellular growth, dysfunction (with mitochondrial dysregulation), and oxidative stress. The mechanisms behind the cardiovascular protective effects of calorie restriction are still under investigation. In this study, we show that this dietetic intervention prevents cardiac protein elevation, avoids fetal gene reprogramming (atrial natriuretic peptide), and blocks the increase in heart weight per tibia length index (HW/TL) seen in isoproterenol-induced cardiac hypertrophy. Our findings suggest that calorie restriction inhibits cardiac pathological growth while also lowering mitochondrial reverse electron transport-induced hydrogen peroxide formation and improving mitochondrial content. Calorie restriction also attenuated the opening of the Ca2+-induced mitochondrial permeability transition pore. We also found that calorie restriction blocked the negative correlation of antioxidant enzymes (superoxide dimutase and glutatione peroxidase activity) and HW/TL, leading to the maintenance of protein sulphydryls and glutathione levels. Given the nature of isoproterenol-induced cardiac hypertrophy, we investigated whether calorie restriction could alter cardiac beta-adrenergic sensitivity. Using isolated rat hearts in a Langendorff system, we found that calorie restricted hearts have preserved beta-adrenergic signaling. In contrast, hypertrophic hearts (treated for seven days with isoproterenol) were insensitive to beta-adrenergic activation using isoproterenol (50 nM). Despite protecting against cardiac hypertrophy, calorie restriction did not alter the lack of responsiveness to isoproterenol in isolated hearts harvested from isoproterenol-treated rats. These results suggest (through a series of mitochondrial, oxidative stress, and cardiac hemodynamic studies) that calorie restriction possesses beneficial effects against hypertrophic cardiomyopathy.


Assuntos
Cálcio , Restrição Calórica , Estresse Oxidativo , Animais , Ratos , Cálcio/metabolismo , Masculino , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Transporte de Elétrons , Isoproterenol , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Ratos Sprague-Dawley
5.
Am J Physiol Cell Physiol ; 326(5): C1334-C1344, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557356

RESUMO

Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of ß-adrenergic receptor (ß-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in ß-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between ß-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the ß-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked ß-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the ß-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.


Assuntos
Miócitos Cardíacos , Propranolol , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Camundongos Endogâmicos C57BL , Isoproterenol/farmacologia , Masculino , Coração/efeitos dos fármacos , Células Cultivadas , Agonistas Adrenérgicos beta/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia
6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2159-2170, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792048

RESUMO

Human ß3-adrenoceptor (ß3AR) agonists were considered potential agents for the treatment of metabolic disorders. However, compounds tested as ß3AR ligands have shown marked differences in pharmacological profile in rodent and human species, although these compounds remain attractive as they were successfully repurposed for the therapy of urinary incontinence. In this work, some biarylamine compounds were designed and tested in silico as potential ß3AR agonists on 3-D models of mouse or human ß3ARs. Based on the theoretical results, we identified, synthesized and tested a biarylamine compound (polibegron). In CHO-K1 cells expressing the human ß3AR, polibegron and the ß3AR agonist BRL 37344 were partial agonists for stimulating cAMP accumulation (50 and 57% of the response to isoproterenol, respectively). The potency of polibegron was 1.71- and 4.5-fold higher than that of isoproterenol and BRL37344, respectively. These results indicate that polibegron acts as a potent, but partial, agonist at human ß3ARs. In C57BL/6N mice with obesity induced by a high-fat diet, similar effects of the equimolar intraperitoneal administration of polibegron and BRL37344 were observed on weight, visceral fat and plasma levels of glucose, cholesterol and triglycerides. Similarities and differences between species related to ligand-receptor interactions can be useful for drug designing.


Assuntos
Agonistas Adrenérgicos beta , Receptores Adrenérgicos beta 3 , Cricetinae , Humanos , Camundongos , Animais , Isoproterenol , Receptores Adrenérgicos beta 3/metabolismo , Camundongos Endogâmicos C57BL , Células CHO , Cricetulus , Agonistas Adrenérgicos beta/farmacologia
7.
Physiol Behav ; 272: 114374, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806511

RESUMO

Several reports have demonstrated that depressive disorder is related to somatic symptoms including gastrointestinal or genitourinary alterations. The pathophysiological mechanisms underlying the gastrointestinal or genitourinary alterations associated with the depression are still not fully understood. Therefore, this study aimed to evaluate the motor activity of gastrointestinal (fundus of stomach and duodenum) and genitourinary tract (bladder) in a stress-based animal model of depression. Adult male mice were submitted to uncontrollable and unpredictable stress (learned helplessness model), controllable stress and non-stressful situations (control). Then, animals were euthanized and the fundus of stomach, duodenum segments or whole bladder were isolated and mounted in a standard organ bath preparation. We evaluated the contractile effects induced by KCl 80 mM for 5 min or carbachol (acetylcholine receptor agonist). The relaxant effects of isoproterenol (ß-adrenoceptor agonist) were also checked. Animals submitted to the learned helplessness model developed a helpless (depressive-like behavior) or resilient (does not exhibit depressive-like behavior) phenotype. The contractions induced by carbachol were diminished in fundus of stomach isolated from helpless and resilient animals. The isoproterenol-induced fundus of stomach relaxation was reduced in resilient but not helpless mice. The contractions/relaxation of duodenum segments isolated from helpless or resilient animals were not altered. Both helpless and resilient animals showed an increase in the bladder contractions induced by carbachol while the relaxant effects of isoproterenol were reduced when compared to control. Conversely, mice underwent a controllable stress situation did not exhibit alterations in the fundus of stomach or duodenum contraction/relaxation induced by pharmacological agents although a decrease in the bladder contraction induced by carbachol was found. In conclusion, incontrollable and unpredictable stress and not depressive phenotype (helpless animals) or controllable stress could be related to the alterations in motor activity of the fundus of stomach and bladder.


Assuntos
Depressão , Bexiga Urinária , Camundongos , Masculino , Animais , Carbacol/farmacologia , Isoproterenol/farmacologia , Estômago/fisiologia , Contração Muscular/fisiologia , Duodeno
8.
Int. j. morphol ; 41(5): 1427-1438, oct. 2023.
Artigo em Inglês | LILACS | ID: biblio-1521021

RESUMO

SUMMARY: The main cause of mortality and disability globally is myocardial infarction (MI). Isoproterenol (ISO), a β-adrenoceptor agonist, has been used to induce rat myocardial necrosis. Whereas interleukin-37 (IL-37) has anti-inflammatory and cytoprotective properties. The study aimed to investigate the potential protective effects of IL-37 administration on cardiac architecture, oxidative stress, and inflammatory markers during ISO-induced MI in rats. Three groups of adult male rats were used in this study, the normal control group (n=8), ISO-induced MI group (n=8) that received isoproterenol hydrochloride (ISO) (100 mg/kg/day, SC, for the first 2 consecutive days), and IL-37-treated group (ISO+IL-37) (n=8) that received recombinant human IL-37 (40 µg/kg /day, intraperitoneally, for 2 weeks during and after ISO injections. Heart rate (HR.) and ECG changes were monitored. Some oxidative stress markers such as superoxide dismutase (SOD), nitric oxide (NOx), malondialdehyde (MDA), and glutathione (GSH) tissue levels in the tissue homogenate were assayed. Interleukin- 6 (IL-6), tumor necrosis factor- α (TNF-α), caspase-8, P53, and C- reactive protein (CRP) were among the inflammatory markers examined. In addition, serum levels of creatinine kinase (CK-MB) and lactate dehydrogenase (LDH) were analyzed to evaluate the myocardial injury. For histological analysis, tissues were sectioned, fixed in paraffin, and stained with hematoxylin and eosin (H&E), Masson Trichrome and, immunohistochemical against NF-kB, TNF-α, and Caspase-9. IL-37 improved ECG changes, cardiac enzyme markers, and some inflammatory markers of oxidative stress in ISO-induced MI. It also improved the histopathological and immunohistochemical changes in MI. In conclusion: IL-37 might be a promising therapeutic modality in myocardial infarction.


La principal causa de mortalidad y discapacidad a nivel mundial es el infarto de miocardio (IM). El isoproterenol (ISO), un agonista de los receptores adrenérgicos β, se ha utilizado para inducir necrosis miocárdica en ratas. Mientras que la interleucina-37 (IL-37) tiene propiedades antiinflamatorias y citoprotectoras. El estudio tuvo como objetivo investigar los posibles efectos protectores de la administración de IL-37 en la arquitectura cardíaca, el estrés oxidativo y los marcadores inflamatorios durante el infarto de miocardio inducido por ISO en ratas. En este estudio se utilizaron tres grupos de ratas macho adultas, el grupo control normal (n=8), el grupo con IM inducido por ISO (n=8) que recibió clorhidrato de isoproterenol (ISO) (100 mg/kg/día, SC, durante los primeros 2 días consecutivos) y el grupo tratado con IL-37 (ISO+IL- 37) (n=8) que recibió IL-37 humana recombinante (40 µg/kg/día, por vía intraperitoneal, durante 2 semanas durante y después de las inyecciones de ISO. Se monitorearon la frecuencia cardíaca (FC) y los cambios en el ECG. Se analizaron algunos marcadores de estrés oxidativo como la superóxido dismutasa (SOD), el óxido nítrico (NOx), el malondialdehído (MDA) y los niveles tisulares de glutatión (GSH) en el homogeneizado de tejido. La interleucina-6 (IL-6), el factor de necrosis tumoral-α (TNF-α), la caspasa-8, la P53 y la proteína C reactiva (CRP) se encontraban entre los marcadores inflamatorios examinados. Se analizaron los niveles de creatinoquinasa (CK-MB) y lactato deshidrogenasa (LDH) para evaluar la lesión miocárdica; para el análisis histológico se seccionaron los tejidos, se fijaron en parafina y se tiñeron con hematoxilina y eosina (H&E), Tricromo de Masson e inmunohistoquímica contra NF-kB, TNF-α y Caspasa-9. IL-37 mejoró los cambios de ECG, los marcadores de enzimas cardíacas y algunos marcadores inflamatorios de estrés oxidativo en el IM inducido por ISO. Además mejoró los cambios histopatológicos e inmunohistoquímicos en MI. En conclusión: la IL-37 podría ser una modalidad terapéutica prometedora en el infarto de miocardio.


Assuntos
Animais , Masculino , Ratos , Interleucinas/administração & dosagem , Coração/efeitos dos fármacos , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/prevenção & controle , Imuno-Histoquímica , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Inflamação , Isoproterenol/efeitos adversos
9.
An Acad Bras Cienc ; 95(suppl 1): e20201878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585966

RESUMO

Alpinia zerumbet is a plant popularly used to treat hypertension and anxiety. Studies with Alpinia zerumbet demonstrate antihypertensive and vasodilator effects, among others. The objective of this study was to analyze the effect of essential oil of Alpinia zerumbet (EOAz) on cardiovascular and autonomic function in rats with isoproterenol-induced myocardial infarction. Male Wistar rats (n=32) were equally allocated into four groups: Control, ISO (150mg/kg, subcutaneous), EOAz (100mg/kg by gavage), ISO+EOAz. The rats were evaluated for cardiovascular and, autonomic parameters, electrocardiogram, and infarct size. EOAz was not able to reduce the electrocardiographic variations induced by ISO. Heart rate variability showed a decrease in sympathetic modulation on the heart in the groups treated with EOAz. The cardiopulmonary reflex induced by serotonin invoked a superior blood pressure variation at the 2 µg/kg dose in the EOAz treated groups, while the heart rate variation was significantly higher at the 16 µg/kg dose, when compared to other doses, in all groups, except EOAz+ISO. The sympathetic vagal index was higher in ISO group than in control. EOAz did not reduce the infarct size. We conclude that pretreatment with EOAz does not reverse the hemodynamic and electrocardiographic damage caused by isoproterenol but does reduce sympathetic modulation.


Assuntos
Alpinia , Infarto do Miocárdio , Óleos Voláteis , Ratos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Isoproterenol , Ratos Wistar , Folhas de Planta , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico
10.
J Trace Elem Med Biol ; 80: 127269, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37506468

RESUMO

INTRODUCTION: Fetal and postnatal hypertrophy develop in response to such different exposures or illnesses the mother suffers during gestation as anti-infectious and physical agents, obesity, hypertension, diabetes, and even advanced maternal age. This gives rise to high comorbidities in the newborn; therefore, looking for alternatives that contribute to cardiac homeostasis is quite necessary to inhibit the overgrowth of myocytes. Boron-derivative compounds could play a key role in exerting a repairing effect on chronic cardiac damage induced during gestation. METHODOLOGY: The cardiotoxic effect of 6.4, 12 and 100 mg/kg of sodium tetraborate administered by oral delivery route to healthy pregnant mice was assessed. After that, the use of the chemical compound was tested in the treatment of pregnant mice previously subjected to isoproterenol (fetal hypertrophy model) on the fifth day post coitus. Prior to the sacrifice of the pups of mice an electrocardiography (ECG) was done. Morphological and histological changes of heart were assessed in newborn pups. As a damage marker, the concentration of p38 nitrogen-activated protein kinases were evaluated by using Western Blot and the levels of malondialdehyde (MDA) as well as glutathione antioxidants (GSH) and glutathione peroxidase (GPx) were tested by spectrometry. Moreover, the mRNA expression for early response genes (c-jun, c-fos y c-myc), late response (GATA-4, Mef2c, NFAT) and heart damage (ANP and BNP) was measured by qPCR real time. RESULTS: The supply of 6,4 and 12 mg/kg-sodium tetraborate favored ventricular remodeling with histological alterations. By comparison, 100 mg/kg of sodium tetraborate administered during the fetal stage did not alter neither the cardiac morphology of six-week old pups nor the p38/P-p38MAPK ratio remained the same and no oxidative stress was observed. When pregnant females treated with isoproterenol were treated with 100 mg/kg sodium tetraborate during the fetal stage, an improvement in contractility was detected in the pups with an actual reduction in myocardial fibrosis and oxidative stress, but cardiac mass increased. In addition, the expression levels of c-jun, c-myc, GATA-4, MEF2c and ANP mRNA declined in comparison with CTR. However, the hypertrophic damage mechanism was sustained by c-fos, NFAT and BNP expressions. CONCLUSIONS: The set of results achieved suggests that high concentrations of sodium tetraborate have no cardiotoxic effects. Furthermore, sodium tetraborate mitigates hypertrophy induced during pregnancy, thereby improving contractibility, reducing oxidative stress and stimulating cell proliferation. Therefore, sodium tetraborate could be an excellent prophylactic treatment administered by delivery oral route during pregnancy when there is a risk of developing fetal left ventricular hypertrophy (LVH).


Assuntos
Glutationa , Estresse Oxidativo , Gravidez , Feminino , Animais , Camundongos , Isoproterenol , Hipertrofia/tratamento farmacológico , Proliferação de Células , Glutationa/metabolismo , Cardiotoxicidade , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA