Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125801

RESUMO

Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.


Assuntos
Lactoferrina , Mannheimia haemolytica , Metaloproteases , Proteólise , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Metaloproteases/metabolismo , Metaloproteases/antagonistas & inibidores , Animais , Apoproteínas/metabolismo , Apoproteínas/química , Simulação de Acoplamento Molecular , Ovinos , Bovinos , Colagenases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Zinco/metabolismo
2.
Biomolecules ; 13(12)2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38136635

RESUMO

The increasing interest in innovative solutions for addressing bone defects has driven research into the use of Bioactive Mesoporous Glasses (MBGs). These materials, distinguished by their well-ordered mesoporous structure, possess the capability to accommodate plant extracts with well-established osteogenic properties, including bovine lactoferrin (bLF), as part of their 3D scaffold composition. This harmonizes seamlessly with the ongoing advancements in the field of biomedicine. In this study, we fabricated 3D scaffolds utilizing MBGs loaded with extracts from parsley leaves (PL) and embryogenic cultures (EC), rich in bioactive compounds such as apigenin and kaempferol, which hold potential benefits for bone metabolism. Gelatin Methacryloyl (GelMa) served as the polymer, and bLF was included in the formulation. Cytocompatibility, Runx2 gene expression, ALP enzyme activity, and biomineralization were assessed in preosteoblastic MC3T3-E1 cell cultures. MBGs effectively integrated PL and EC extracts with loadings between 22.6 ± 0.1 and 43.6 ± 0.3 µM for PL and 26.3 ± 0.3 and 46.8 ± 0.4 µM for EC, ensuring cell viability through a release percentage between 28.3% and 59.9%. The incorporation of bLF in the 3D scaffold formulation showed significant differences compared to the control in all assays, even at concentrations below 0.2 µM. Combinations, especially PL + bLF at 0.19 µM, demonstrated additive potential, with superior biomineralization compared to EC. In summary, this study highlights the effectiveness of MBGs in incorporating PL and EC extracts, along with bLF, into 3D scaffolds. The results underscore cytocompatibility, osteogenic activity, and biomineralization, offering exciting potential for future in vivo applications.


Assuntos
Lactoferrina , Petroselinum , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Osteoblastos/metabolismo , Técnicas de Cultura de Células
3.
Eur Arch Otorhinolaryngol ; 280(8): 3891-3896, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227470

RESUMO

PURPOSE: It has been hypothesised that secretory carcinoma of the salivary gland (SCsg) might have a lactational-like differentiation. Therefore, we aimed to assess the immunoexpression of breast hormonal receptors and milk-related proteins in cases of SCsg and other salivary gland tumours with prominent secretory activity. METHODS: Immunohistochemistry against prolactin and growth hormone receptors, lactoferrin, human milk fat globule 1, MUC 1 and MUC4 was performed in twelve cases of SCsg and 47 other salivary gland tumours. RESULTS: Most cases of SCsg were negative for prolactin and growth hormone receptors. All cases of SCsg showed enhanced membranous-cytoplasmic staining for human milk fat globule 1, a pattern seen in other tumour groups. Only SCsg showed widespread strong staining for lactoferrin, concomitantly in the cell compartment and secretion. The other positive tumour types exhibited restricted staining. MUC1 and MUC4 showed no distinct pattern of expression. CONCLUSION: Although SCsg failed to demonstrate a complete lactational-like differentiation, lactoferrin showed a distinctive expression pattern in SCsg compared to other tumour types, which makes it a good marker to help in its differential diagnosis.


Assuntos
Carcinoma , Neoplasias das Glândulas Salivares , Humanos , Lactoferrina/metabolismo , Prolactina , Receptores da Somatotropina/metabolismo , Biomarcadores Tumorais/metabolismo , Glândulas Salivares/patologia , Carcinoma/patologia , Neoplasias das Glândulas Salivares/patologia , Diferenciação Celular
4.
Biometals ; 36(3): 575-585, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36326924

RESUMO

Lactoferrin (LF) is present in the oviduct, reduces in vitro gamete interaction, and affects sperm capacitation parameters in humans. Our aim was to investigate LF actions on further stages of the reproductive process in the Wistar rat model. Motile sperm were obtained from cauda epididymis to assess LF binding by direct immunofluorescence and LF effect on acrosome reaction (AR) using a Coomassie blue staining. After ovarian hyperstimulation of female rats, oocytes were surgically recovered and coincubated with motile sperm and different doses of LF to estimate the in vitro fertilization (IVF) rate. To evaluate the LF effect on pregnancy and embryo implantation, female rats (80 days old) were placed with males and received daily intraperitoneal injections of LF during one complete estrous cycle (pregnancy experiments) or during the first 8 gestational days (implantation experiments). The number of pregnant females and live born pups was recorded after labor. Moreover, the number of implantation sites was registered during the implantation period. LF was able to bind to the sperm head, midpiece, and tail. 10 and 100 µg/ml LF stimulated the AR but reduced the IVF rate. The administration of 100 and 200 mg/kg LF significantly decreased the number of implantation sites and the litter size, whereas 100 mg/kg LF declined the pregnancy rate. The results suggest that LF might interfere with the reproductive process, possibly interfering with gamete interaction or inducing a premature AR; nevertheless, the mechanisms involved are yet to be elucidated.


Assuntos
Implantação do Embrião , Fertilização in vitro , Lactoferrina , Sêmen , Animais , Feminino , Humanos , Masculino , Gravidez , Ratos , Reação Acrossômica , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Ratos Wistar , Sêmen/efeitos dos fármacos , Sêmen/metabolismo
5.
Mol Biol Rep ; 50(1): 193-201, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319786

RESUMO

PURPOSE: Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS: Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION: Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.


Assuntos
Neoplasias da Mama , Lactoferrina , Humanos , Feminino , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Neoplasias da Mama/metabolismo , Células MCF-7 , Células MDA-MB-231
6.
Oxid Med Cell Longev ; 2022: 2187696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092155

RESUMO

Bovine lactoferrin (bLf) is a multifunctional protein widely associated with anticancer activity. Prostate cancer is the second most frequent type of cancer worldwide. This study was aimed at evaluating the influence of bLf on cell viability, cell cycle progression, reactive oxygen species (ROS) production, and rate of apoptosis in the human prostate cancer cell line (DU-145). MTT assay and trypan blue exclusion were used to analyze cell viability. Morphological changes were analyzed through optical microscopy after 24 h and 48 h of bLf treatment. FITC-bLf internalization and cellular damage were observed within 24 h by confocal fluorescence microscopy. Cell cycle analyses were performed by flow cytometry and propidium iodide. For caspases 3/7 activation and reactive oxygen species production evaluation, cells were live-imaged using the high-throughput system Operetta. The cell viability assays demonstrated that bLf induces cell death and morphological changes after 24 h and 48 h of treatment compared to control on DU-145 cells. The bLf internalization was detected in DU-145 cells, G1-phase arrest of the cell cycle, caspase 3/7 activation, and increased oxidative stress on bLf-treated cells. Our data support that bLf has an important anticancer activity, thus offering new perspectives in preventing and treating prostate cancer.


Assuntos
Lactoferrina , Neoplasias da Próstata , Apoptose , Sobrevivência Celular , Humanos , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Nutrients ; 14(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35889882

RESUMO

Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Nascimento Prematuro , Adulto , Encéfalo/metabolismo , Enterocolite Necrosante/prevenção & controle , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Longevidade , Leite Humano/metabolismo , Gravidez
8.
Int J Biol Macromol ; 187: 325-331, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34280448

RESUMO

Understanding nonionic surfactant-protein interactions is fundamental from both technological and scientific points of view. However, there is a complete absence of kinetic data for such interactions. We employed surface plasmon resonance (SPR) to determine the kinetic and thermodynamic parameters of bovine lactoferrin-Brij58 interactions at various temperatures under physiological conditions (pH 7.4). The adsorption process was accelerated with increasing temperature, while the desorption rate decreased, resulting in a more thermodynamically stable complex. The kinetic energetic parameters obtained for the formation of the activated complex, [bLF-Brij58]‡, indicated that the potential energy barrier for [bLF-Brij58]‡ formation arises primarily from the reduction in system entropy. [bLF-Brij58]○ formation was entropically driven, indicating that hydrophobic interactions play a fundamental role in bLF interactions with Brij58.


Assuntos
Cetomacrogol/metabolismo , Lactoferrina/metabolismo , Tensoativos/metabolismo , Temperatura , Adsorção , Cetomacrogol/química , Entropia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lactoferrina/química , Ligação Proteica , Ressonância de Plasmônio de Superfície , Tensoativos/química
9.
Arch Virol ; 166(4): 1203-1211, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33606112

RESUMO

Lactoferrin is part of the innate immune system, with antiviral activity against numerous DNA and RNA viruses. Rhinoviruses, the leading cause of the common cold, are associated with exacerbation of respiratory illnesses such as asthma. Here, we explored the effect of bovine lactoferrin (BLf) on RV-B14 infectivity. Using different assays, we show that the effect of BLf is strongest during adhesion of the virus to the cell and entry. Tracking the internalisation of BLf and virus revealed a degree of colocalisation, although their interaction was only confirmed in vitro using empty viral particles, indicating a possible additional influence of BLf on other infection steps.


Assuntos
Antivirais/farmacologia , Enterovirus/efeitos dos fármacos , Lactoferrina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Enterovirus/fisiologia , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Lactoferrina/metabolismo , Ligação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA