Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Electron. j. biotechnol ; 12(2): 4-5, Apr. 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-551365

RESUMO

The effect of metal ions, ferric ion (Fe3+) and molybdenum ion (Mo6+) on the denitrification process of Paracoccus pantotrophus P16 grown under saline conditions was investigated. Results revealed that the dosages of added Fe3+ and Mo6+ significantly accelerated nitrate utilization and nitrite accumulation. Enzymatic studies revealed that the membrane-bound nitrate reductase and the periplasmic nitrite reductase had activities of 998 +/- 28 and 373 +/- 18 nmol (mg protein)-1 min-1, respectively after growing Paracoccus pantotrophus P16 in medium supplemented with 1.5 micron M Fe3+. If provided with 1.5 micron M Fe3+and 2.4 micron M Mo6+, the membrane-bound nitrate reductase activity increased to 6,223 +/- 502 nmol (mg protein)-1 min-1 and the periplasmic nitrite reductase was 344 +/- 20 nmol (mg protein)-1 min-1. The results indicated that an addition of Fe3+ and Mo6+ led to an overstimulation of nitrate reductase activity as compared with nitrite reductase activity. When glucose was supplied, the minimal ratio of carbon per nitrate (C/N) was 2.31 mg C/mg NO3--N with denitrification yield of 0.45 g NO3--N/g C. Addition of ethanol instead of glucose, the minimal ratio of C/N was 1.15 mg C/mg NO3--N with denitrification yield of 1.08 g NO3--N/g C.


Assuntos
Artemia/metabolismo , Molibdoferredoxina/metabolismo , Paracoccus pantotrophus , Paracoccus pantotrophus/enzimologia , Bioacumulação/análise , Desnitrificação
2.
J Am Chem Soc ; 124(2): 216-24, 2002 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-11782173

RESUMO

A new class of Mo/Fe/S clusters with the MoFe(3)S(3) core has been synthesized in attempts to model the FeMo-cofactor in nitrogenase. These clusters are obtained in reactions of the (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (I), (n)Pr (II)] clusters with CO. The new clusters include those preliminarily reported: (Cl(4)-cat)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (III), (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(3)(CO)(5) (IV), (Cl(4)-cat)(Pyr)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (VI), and (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(4) (VIII). In addition the new (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(5) cluster (IVa), the (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(2)(CO)(6)cluster (V), the (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (Va), the (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VIa), and the (Cl(4)-cat)(P(n)Pr(3))MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VII) also are reported. Clusters III-VIII have been structurally and spectroscopically characterized. EPR, zero-field (57)Fe-Mössbauer spectroscopic characterizations, and magnetic susceptibility measurements have been used for a tentative assignment of the electronic and oxidation states of the MoFe(3)S(3) sulfur-voided cuboidal clusters. A structural comparison of the clusters with the MoFe(3)S(3) subunit of the FeMo-cofactor has led to the suggestion that the storage of reducing equivalents into M-M bonds, and their use in the reduction of substrates, may occur with the FeMo-cofactor, which also appears to have M-M bonding. On the basis of this argument, a possible N(2)-binding and reduction mechanism on the FeMoco-cofactor is proposed.


Assuntos
Compostos Heterocíclicos de Anel em Ponte/química , Compostos Heterocíclicos de Anel em Ponte/síntese química , Molibdoferredoxina/química , Nitrogenase/química , Sulfetos/química , Sulfetos/síntese química , Cristalografia por Raios X , Ativação Enzimática , Conformação Molecular , Mimetismo Molecular , Estrutura Molecular , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA