Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 353: 114060, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367454

RESUMO

Inflammatory processes play a pivotal role in the development and progression of depression. Since Follistatin-like protein 1 (FSTL1) has been identified as a novel inflammatory protein, a variety of studies suggest that targeting FSTL1 may be useful in the treatment of diseases in which inflammation plays a central role. In the study, we aimed to investigate the causal relationship between FSTL1 signaling and the development of depression. To explore the effect and mechanism of FSTL1 on chronic stress-induced depression, the chronic unpredictable mild stress (CUMS) paradigm was used. Animals subjected to CUMS for 4 weeks exhibited depressive-like symptoms, including decreased sucrose preference and obvious behavioral despair, concomitantly with increased FSTL1 level in the hippocampus. In contrast, mice with FSTL1 knockdown abolished CUMS induced depression-like and anxiety-like behaviors. Moreover, FSTL1 knockdown reversed CUMS induced synaptic plasticity deficits in the PP-DG pathway of the hippocampus and increased the expression of synaptic associated proteins in the hippocampus of CUMS exposed mice. Microglia activation induced by CUMS paradigm could be significantly inhibited by FSTL1 knockdown. Furthermore, Western blot revealed that FSTL1 knockdown considerably decreased the expression of indicated molecules TLR4/MyD88/NF-κB signaling pathway in CUMS exposed mice. In conclusion, our data implies that FSTL1 may modulate the microglial activation through TLR4/MyD88/NF-κB signaling, which affects depression-like behaviors and synaptic function deficits induced by CUMS in mice. These results suggested that the role of FSTL1 in mediating microglia-related mechanisms in depression may shed light on developing new therapeutic strategies to treat this prevalent disease.


Assuntos
Proteínas Relacionadas à Folistatina/metabolismo , NF-kappa B , Animais , Depressão/metabolismo , Modelos Animais de Doenças , Proteínas Relacionadas à Folistatina/genética , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide , NF-kappa B/metabolismo , Estresse Psicológico/tratamento farmacológico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
J Proteomics ; 254: 104474, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990821

RESUMO

Syndecans belong to the family of transmembrane heparan sulfate proteoglycans and are associated with many physiopathological processes, including oral cancer. As previously shown soluble syndecan-1 (SDC1) fragments and synthetic SDC1 peptide were able to induce cell migration in oral cancer cell lines. In order to explore the role of SDC1 in oral cancer, we have investigated SDC1 interacting partners and its functional role in oral cancer models. Here we have shown that SDC1 interacts with follistatin-related protein 1 (FSTL1) by its ectodomain (ectoSDC1) and extracellular juxtamembrane peptide (pepSDC1) and that their transcript levels can affect tumor events. Using orthotopic mouse model we identified that the knock-down for FSTL1 (shFSTL1) or for both FSTL1 and SDC1 (sh2KD) produced less aggressive and infiltrative tumors, with lower keratinization deposition, but with increased levels of epithelial-mesenchymal transition and proliferation compared to control and SDC1 knock-down. Based on cell culture assays, we suggest that the shFSTL1 effect on tumor tissues might be from significant increase of mRNA levels of Activin A (ActA) and its resceptors. This study shows for the first time two different complexes, SDC1 and FSTL1; pepSDC1 and FSTL1, exhibiting a close relationship in cell signaling events, as FSTL1 promotes a more aggressive phenotype. SIGNIFICANCE: This work contributes to the understanding of new SDC1 functions, based on the investigation of protein-protein complex formation in Oral Squamous cell carcinoma (OSCC) models. The FSTL1 identification, as an interacting partner of SDC1 ectodomain and of its derived peptide promotes molecular events that favors cancer development and progression, as highlighted by Activin A (ActA) and Epithelial-mesenchymal transition (EMT) gene expression and by changes in the phenotype of orthotopic OSCC mouse tumor tissues when SDC1-FSTL1 expression is modulated.


Assuntos
Carcinoma de Células Escamosas , Proteínas Relacionadas à Folistatina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Proteínas Relacionadas à Folistatina/genética , Camundongos , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Sindecana-1/genética , Sindecana-1/metabolismo
3.
Circulation ; 142(9): 882-898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640834

RESUMO

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Assuntos
Cardiomegalia/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinase/metabolismo , Animais , Cardiomegalia/genética , Proteínas Relacionadas à Folistatina/genética , Proteína Forkhead Box O1/genética , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Uridina Quinase/genética
4.
Mol Biol Rep ; 47(1): 87-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31576511

RESUMO

Resequencing of Myostatin, Growth Hormone, Follistatin-A-like, Insulin-like Growth Factor I (IGF-I) and Myogenin (MYOG) genes was completed to discover novel genetic variations and assess non synonymous (ns) polymorphisms (SNPs) effect on growth related traits of channel catfish. Wild and farmed animals were used as a discovering population. Resequencing lead to the identification of 59 new variants in the five analyzed genes; 66% found in introns and 34% in coding regions. From coding regions, 14 variants were synonyms and six were ns variations. A mutation rate of one in 129 bp was estimated. Four ns variations were selected for validation and association analysis. In IGF-I two ns polymorphisms, at IGF-I19 the G wild type allele was fixed in population and for IGF-I63 the C allele had a frequency of 0.972 and for mutate allele G of 0.027. In MYOG two ns SNPs were assessed. MYOG131 presented a frequency of alleles T and A, of 0.754 and 0.246, respectively and MYOG233, with a frequency of G and C of 0.775 and 0.225, respectively. Only MYOG131 (g.529T>A) was significantly associated (P < 0.04) to some growth traits. Results suggest MYOG131 g.529T>A as candidate locus for genetic enhancement of growth traits in channel catfish.


Assuntos
Crescimento e Desenvolvimento/genética , Ictaluridae/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Animais , Proteínas Relacionadas à Folistatina/genética , Hormônio do Crescimento/genética , Ictaluridae/crescimento & desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Miogenina/genética , Miostatina/genética
5.
Sci Rep ; 7(1): 9765, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852127

RESUMO

Bardet-Biedl syndrome is a model ciliopathy. Although the characterization of BBS proteins has evidenced their involvement in cilia, extraciliary functions for some of these proteins are also being recognized. Importantly, understanding both cilia and cilia-independent functions of the BBS proteins is key to fully dissect the cellular basis of the syndrome. Here we characterize a functional interaction between BBS4 and the secreted protein FSTL1, a protein linked to adipogenesis and inflammation among other functions. We show that BBS4 and cilia regulate FSTL1 mRNA levels, but BBS4 also modulates FSTL1 secretion. Moreover, we show that FSTL1 is a novel regulator of ciliogenesis thus underscoring a regulatory loop between FSTL1 and cilia. Finally, our data indicate that BBS4, cilia and FSTL1 are coordinated during the differentiation of 3T3-L1 cells and that FSTL1 plays a role in this process, at least in part, by modulating ciliogenesis. Therefore, our findings are relevant to fully understand the development of BBS-associated phenotypes such as obesity.


Assuntos
Diferenciação Celular/genética , Cílios/genética , Cílios/metabolismo , Proteínas Relacionadas à Folistatina/biossíntese , Proteínas Relacionadas à Folistatina/genética , Regulação da Expressão Gênica , Proteínas/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Técnicas de Silenciamento de Genes , Espaço Intracelular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos , Proteínas/genética
6.
Oncotarget ; 8(26): 42189-42197, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28178680

RESUMO

Follistatin-like 3 (FSTL3) binds and inactivates activin, a growth factor involved with cell growth and differentiation. We have previously shown FSTL3 overexpression in invasive breast cancers, but its clinical relevance remained unexplored. Here we evaluate FSTL3 as a prognostic tool and its relation with clinical and pathological features of breast cancer. A cohort of 154 women diagnosed with invasive breast cancer between 2008 and 2012 was followed up for 5 years. Tumor samples were processed by immunohistochemistry to detect FSTL3 expression in tumor epithelium. FSTL3 expression was classified semiquantitatively and tested for possible correlation with age, menopause status, stage, tumor histological type and grade, estrogen receptor, progesterone receptor, and HER2 expression. Survival plots with Kaplan-Mayer statistics were used to assess whether FSTL3 expression predicted disease-free survival. Our findings show that FSTL3 staining was unrelated to menopausal status, histological type, disease stage, or receptor profile. However, the intensity of FSTL3 immunostaining correlated inversely with tumor size (r = -0.366, p<0.001) and with nuclear grade (p<0.01). The intensity of FSTL3 expression in the tumoral epithelium was not predictive of the disease-free survival (p = 0.991, log-rank test), even though the follow-up length and the study size were sufficient to detect a significant reduction in disease-free survival among women with stage III-IV compared to stage I-II disease (p<0.001). FSTL3 expression in invasive breast cancer is inversely associated with tumor size and nuclear grade but it does not predict disease relapse in the short term.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Proteínas Relacionadas à Folistatina/genética , Neoplasias da Mama/patologia , Feminino , Proteínas Relacionadas à Folistatina/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Razão de Chances , Prognóstico , Fatores de Risco
7.
BMC Cancer ; 9: 320, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19740438

RESUMO

BACKGROUND: Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases. METHODS: Paraffin embedded specimens of normal breast (NB - n = 8); florid hyperplasia without atypia (FH - n = 17); fibroadenoma (FIB - n = 17); ductal carcinoma in situ (DCIS - n = 10) and infiltrating ductal carcinoma (IDC - n = 15) were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively. RESULTS: Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed. CONCLUSION: The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the present findings indicate that an increased FST and FLRG expression in breast proliferative diseases might counteract the anti-proliferative effects of activin in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas Relacionadas à Folistatina/genética , Folistatina/genética , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Feminino , Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Humanos , Pessoa de Meia-Idade , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA