Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(8): 5530-5540, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39093994

RESUMO

This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit ∼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Celulose , Escherichia coli , Grafite , Teste de Materiais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Staphylococcus aureus , Cicatrização , Grafite/química , Grafite/farmacologia , Prata/química , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Gluconacetobacter xylinus/química , Humanos , Camundongos , Bandagens , Animais
2.
Int J Biol Macromol ; 276(Pt 2): 133774, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004244

RESUMO

Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing. This study aimed to develop an FTL-incorporated dressing based on BC, and to evaluate its physicochemical properties and biological activity in vitro. An experimental design was employed to maximize FTL loading yield onto the BC and BCOXI, where independent variables were FTL concentration, temperature and immobilization time. BCOXI-FTL 1 (44.96 % ± 1.34) had the highest incorporation yield (IY) at the experimental conditions: 6 h, 5 °C, 20 µg mL-1. The second highest yield was BCOXI-FTL 6 (23.28 % ± 1.43) using 24 h, 5 °C, 100 µg mL-1. Similarly, the same reaction parameters provided higher immobilization yields for native bacterial cellulose: BC-FTL 6 (16.91 % ± 1.05) and BC-FTL 1 (21.71 % ± 1.57). Purified FTL displayed no cytotoxicity to fibroblast cells (<50 µg mL-1 concentration) during 24 h. Furthermore, BCOXI-FTL and BC-FTL were non-cytotoxic during 24 h and stimulated fibroblast migration. BCOXI-FTL demonstrated neutrophil activation in vitro similar to FTL. These promising results indicate that the bacterial cellulose matrices containing FTL at low concentrations, could be used as an innovative biomaterial for developing wound dressings.


Assuntos
Artocarpus , Bandagens , Celulose , Lectinas de Plantas , Artocarpus/química , Celulose/química , Celulose/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Animais , Camundongos , Fibroblastos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
3.
Int J Biol Macromol ; 269(Pt 2): 132266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777689

RESUMO

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.


Assuntos
Celulose , Óleos Voláteis , Óleos de Plantas , Celulose/química , Celulose/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Géis/química , Cicatrização/efeitos dos fármacos , Fabaceae/química , Humanos , Fibroblastos/efeitos dos fármacos , Pelargonium/química , Silanos/química
4.
J Biomed Mater Res B Appl Biomater ; 112(4): e35399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533823

RESUMO

Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.


Assuntos
Queimaduras , Chlorella vulgaris , Microalgas , Animais , Ratos , Antioxidantes , Queimaduras/terapia , Colágeno/uso terapêutico , Reepitelização , Pele/metabolismo
5.
Int J Biol Macromol ; 226: 172-183, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495987

RESUMO

Hyaluronic acid (HA) is a biopolymer of enormous value aggregation for in general industry. The vitreous humor of the eyeball from Nile tilapia contains appreciable amounts of hyaluronic acid. In this sense, the aim of this work was to extract and characterize hyaluronic acid from the eyeball of the Nile tilapia for biomedical applications, adding value to fish industry residues. The characterization by infra-red (FTIR), 13C nuclear magnetic resonance (NMR) and high performance liquid chromatography (HPLC) confirmed that hyaluronic acid was obtained. The gel permeation chromatography (GPC) showed that the obtained material presents a low molecular mass (37 KDa). Thermogravimetry (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis showed that the materials present a thermal stability superior to the commercial hyaluronic acid from Streptococcus equi, with a partially crystalline character. The cytotoxicity assay (MTT method) with fibroblast cells (L929) demonstrated that the extracted biopolymer besides not being cytotoxic, was able to stimulate cell proliferation. Therefore, the hyaluronic acid extracted from this source of residue constitutes a product with biotechnological potential, which has adequate quality for wide biomedical applications.


Assuntos
Ciclídeos , Doenças dos Peixes , Animais , Ácido Hialurônico
6.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236105

RESUMO

Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% w/v PVP containing 3, 1.0, 0.6, and 0.2% w/v Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.

7.
J Biomed Mater Res A ; 109(12): 2556-2569, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34245089

RESUMO

The molecular weight of chitosan (CS) may affect its physical properties and its ability to induce an appropriate host response. The biocompatibilities of CS membranes of low (LMWCS) and high (HMWCS) molecular weight were investigated by inserting these materials into the subcutaneous tissue of rats for 1-28 days and evaluating leukocyte infiltration, granulation tissue, fibrosis, arginase-1 immunostaining, as well as nuclear factor-κB (NF-κΒ) and fibroblast growth factor (FGF)-2 expressions. Both CS membranes induced a peak of leukocyte infiltration on the first day of insertion and stimulated granulation and fibrous tissue generation when compared to control. LMWCS induced more collagen deposition a week earlier, when compared to the control and HMWCS membrane. The membranes also increased arginase-1 immunostaining, a M2 macrophage marker. M2 macrophage is recognized as anti-inflammatory and pro-regenerative. NF-κB is an essential biomarker of the inflammatory process and induces the expression of several pro-inflammatory cytokines. The LMWCS membrane reduced inflammation, as indicated by a reduced nucleus/cytoplasm NF-κB ratio in surrounding tissue from days 7 to 14 when compared to control. On the first day, the expression of FGF-2, a biomarker of inflammatory resolution, was increased in the tissue of the LWMCS group, when compared with HMWCS, which was consistent with the type I collagen deposition. Thus, LWMCS was associated with a prior reduction of the inflammatory response and improved wound healing.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Quitosana/química , Quitosana/toxicidade , Inflamação/induzido quimicamente , Animais , Arginase/metabolismo , Colágeno/metabolismo , Citocinas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose , Tecido de Granulação/patologia , Inflamação/patologia , Leucócitos/patologia , Masculino , Peso Molecular , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Cicatrização
8.
Int J Biol Macromol ; 167: 1361-1370, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33217462

RESUMO

Essential oils (EOs) are bioactive compounds with therapeutic potential for use as alternatives or as support to conventional treatments. However, EOs present limitations, such as sensibility to environmental factors, which can be overcome through microencapsulation. The objective of this study was to produce, by spray drying, chitosan microparticles (CMs) loaded with EO of Lemongrass (Cymbopogon flexuosus), Geranium (Pelargonium x ssp) and Copaiba (Copaifera officinalis). Physicochemical and biological characterization of these microparticles showed that CMs presented spherical morphology, had an average size range of 2-3 µm with positive zeta potential (ZP) values, and enhanced thermal stability, compared to free EO. The encapsulation efficiency (EE) ranged from 4.8-58.6%, depending on the oil's properties. In vitro EO release from CMs was determined at different pHs, with 94% release observed in acid media. All microparticles were non-hemolytic at concentrations of up to 0.1 mg·mL-1. EOs and CMs presented acetylcholinesterase (AChE) inhibition activity (IC 50 ranged from 11.92 to 28.18 µg·mL-1). Geranium and Copaiba EOs presented higher toxicity against Artemia salina, and greater inhibition of acetylcholinesterase, indicating potential bioactivity for Alzheimer's disease (AD). Our findings demonstrate that CM systems may show promise for the controlled release of these EOs.


Assuntos
Artemia/efeitos dos fármacos , Cápsulas/química , Quitosana/química , Inibidores da Colinesterase/farmacologia , Cymbopogon/química , Fabaceae/química , Óleos Voláteis/análise , Pelargonium/química , Animais , Sangue/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Cymbopogon/toxicidade , Fabaceae/toxicidade , Hemólise , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Microscopia Eletrônica de Varredura , Óleos Voláteis/química , Tamanho da Partícula , Pelargonium/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Carbohydr Polym ; 155: 425-431, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702531

RESUMO

Bacterial cellulose (BC) is a polymer with interesting physical properties owing to the regular and uniform structure of its nanofibers, which are formed by amorphous (disordered) and crystalline (ordered) regions. Through hydrolysis with strong acids, it is possible to transform BC into a stable suspension of cellulose nanocrystals, adding new functionality to the material. The aim of this work was to evaluate the effects of inorganic acids on the production of BC nanocrystals (BCNCs). Acid hydrolysis was performed using different H2SO4 concentrations and reaction times, and combined hydrolysis with H2SO4 and HCl was also investigated. The obtained cellulose nanostructures were needle-like with lengths ranging between 622 and 1322nm, and diameters ranging between 33.7 and 44.3nm. The nanocrystals had a crystallinity index higher than native BC, and all BCNC suspensions exhibited zeta potential moduli greater than 30mV, indicating good colloidal stability. The mixture of acids resulted in improved thermal stability without decreased crystallinity.


Assuntos
Celulose/química , Gluconacetobacter/química , Nanopartículas , Hidrólise , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA